SONA COLLEGE OF TECHNOLOGY, SALEM-5

(An Autonomous Institution)

B.Tech-Mechatronics Engineering

CURRICULUM and SYLLABI

[For students admitted in 2020-2021]

B.E / B.Tech Regulation 2019

Approved by BOS and Academic Council meetings

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester I under Regulations 2019 (CBCS) Branch: Mechatronics Engineering

S.No.	Course Code	Course Title	L	Т	Р	С	Category		
		Theory							
1	U19ENG101B	English for Engineers-I	1	0	2	2	HS		
2	U19MAT102A	Linear Algebra and Calculus	3	1	0	4	BS		
3	U19PHY103B	Engineering Physics	3	0	0	3	BS		
4	U19CHE104G	Engineering Chemistry	3	0	0	3	BS		
5	U19PPR105	Problem solving using Python Programming	3	0	0	3	ES		
6	U19EGR106	Engineering Graphics **	2	0	2	3	ES		
Practical									
7	U19PCL108B	Physics and Chemistry Laboratory#	0	0	2	1	BS		
8	U19PPL111	Python Programming Laboratory	0	0	2	1	ES		
9	U19GE101	Basic aptitude-I	0	0	2	0	EEC		
		Т	otal	Crec	lits	20			
		Optional Language Elective	*						
10	U190LE1101	French							
11	U190LE1102	German	0	0	2	1	HS		
12	U190LE1103	Japanese							

*Students may opt for foreign languages viz., German/French/Japanese with additional one credit (Not accounted for CGPA calculation)

Laboratory classes on alternate weeks for physics and chemistry. The lab examination will be conducted separately for 50 marks each with 2 hours durations.

** The examination will be conducted for 3 hours through CAD software and manual drafting.

Approved By

Chairperson,	Chairperson,	Member Secretary,	Chairperson,
Science and	Mechatronics	Academic Council	Academic Council
Humanities BoS	Engineering	Dr.R.Shivakumar	& Principal
Dr.M.Renuga	BoS		Dr.S.R.R.Senthil
	Dr.P.Suresh		Kumar

Copy to:-

HOD/ Mechatronics Engineering, First Semester BE MCT Students and Staff, COE

S.N	Course Code	le Course Title		Т	P	С	Category	Total Contact Hours
		Theory						
1	U19ENG201B	English for Engineers -Il	1	0	2	2	HSMC	45 (15L+30P)
2	U19MAT202A	Differential Equations and Vector Calculus	3	1	0	4	BSC	60
3	U19PHY203F	Physics for electron devices	3	0	0	3	BSC	45
4	U19CHE204E	Modern materials	3	0	0	3	BSC	45
5	U19MCT201	Engineering Mechanics	3	0	0	3	ESC	45
6	U19MCT202	Basic Electrical Engineering	3	0	0	3	ESC	45
		Practical						1
7	U19WPL212	Workshop Practice	0	0	2	1	ESC	30
8	U19MCT203	Basic Electrical Engineering and Devices Laboratory	0	0	4	2	ESC	60
9	U19GE201	Basic Aptitude – II	0	0	2	0	EEC	30
			Т	otal Cr	edits	21	1	
		Optional Language El	ective*		1.00			Contraction of the
10	U190LE1201	French						
11	U190LE1202	German		0	2	1	HSMC	30
12	U190LE1203	Japanese						30

Sona College of Technology, Salem – 636 005 (An Autonomous Institution) Courses of Study for BE / B Tech Semester II under Regulations 2019 (CBCS) Branch: Mechatronics Engineering

*Students may opt for foreign languages viz., German/French/Japanese with additional one credit (Not accounted for CGPA calculation)

Approved by

mohan	12000 mill	Thirallmar	
Chairperson, Science and Humanities BoS	Chairperson, Mechatronics Engineering BoS	Member Secretary, Academic Council	Chairperson, Academic Council & Principal
Dr. M. Renuga	Dr. P. Suresh	Dr. R. Shivakumar	Dr. S. R. R. Senthil Kumar

Copy to:-

HOD/ Mechatronics Engineering, First Semester BE MCT Students and Staff, COE

04.06.2021

B.E/B. Tech Regulations-2019

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester III Regulations 2019 Branch: Mechatronics Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact
							Hours
		Theory					
1	U19MC301	Fluid Mechanics and Machinery	3	0	0	3	45
2	U19MC302	Strength of Materials300			3	45	
3	U19MC303	Manufacturing Technology	0	0	3	45	
4	U19MC304	Electrical Drives and Control	3	0	0	3	45
5	U19MC305	Digital Electronics	3	0	0	3	45
6	U19GE304	Mandatory course: Constitution of India200					30
		Practical	·				
7	U19MC306	Fluid Mechanics and Strength of Materials Laboratory	0	0	4	2	60
8	U19MC307	Manufacturing Technology Laboratory	0	0	3	1.5	45
9	U19MC308	Electrical Drives and Control Laboratory	0	0	3	1.5	45
10	U19GE301	Soft Skill and Aptitude – I	0	0	2	1	30
				To	tal Credits	21	

Approved By

Chairperson, Mechatronics Engineering BoS Dr.P.Suresh

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/ Mechatronics Engineering, Third Semester BE MCT Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester IV Regulations 2019 Branch: Mechatronics Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total
							Contact
							Hours
		Theory					·
1	U19MAT401B	Probability and Statistical Methods	3	1	0	4	60
2	U19MC401	Fluid Power Systems	3	0	0	3	45
3	U19MC402	Thermodynamics and Heat Transfer	3	0	0	3	45
4	U19MC403	Microprocessors and Microcontroller	3	0	0	3	45
5	U19MC902	Elective: Sensors, Transducers and Instrumentation	3	0	2	4	75
6	U19GE402	Mandatory course: Environment and Climate science	2	0	0	0	30
		Practical					
7	U19MC404	Fluid Power Systems Laboratory	0	0	4	2	60
8	U19MC405	Microprocessor and Microcontroller Laboratory	0	0	4	2	60
9	U19GE401	Soft Skill and Aptitude – II	0	0	2	1	30
		•	•	To	tal Credits	22	

Approved By

Chairperson, Mechatronics Engineering BoS Dr.P.Suresh

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/ Mechatronics Engineering, Fourth Semester BE MCT Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester V under Regulations 2019 Branch: Mechatronics Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours						
		Theory											
1	U19MC501	CAD/CAM	3	0	0	3	45						
2	U19MC502	Theory of machines	3	0	0	3	45						
3	U19MC503	Data structure using python	3	0	2	4	75						
4	U19MC504	Industrial Automation	3	0	0	3	45						
5	5noc22_me123NPTEL- Automation in manufacturing3003						45						
		Practical											
6	U19MC505	CAD/CAM Laboratory	0	0	3	1.5	45						
7	U19MC506	Industrial Automation Laboratory	0	0	3	1.5	45						
8	U19MC507	Mini Project-I	0	0	2	1	30						
9	U19GE501	Soft Skills and Aptitude – III	0	0	2	1	30						
			Total Credits 21										

Approved By

Chairperson, Mechatronics Engineering BoS Dr.P.Suresh Member Secretary, Academic Council Dr.R.Shivakumar

Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/ Mechatronics Engineering, Fifth Semester BE MCT Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VI Regulations 2019 Branch: Mechatronics Engineering

S No	Course Code		Course Title	Locturo	Tutorial	Dractical	Credit	Total
5. 110	Course Coue		Course ritte	Lecture	1 0101 181	Tactical	Creuit	Contact Hours
			Theory		-		-	
1	U19MC601	Artificial Intel	ligence and Machine Learning	3	0	0	3	45
2	U19MC602	Image Process	ing and Computer Vision	3	0	0	3	45
3	U19MC603	Robotics		3	0	0	3	45
4	U19MC904	Professional	Electric and Hybrid Vehicles	2	0	0	2	15
4	U19MC905	Elective:	Digital Manufacturing	3	0	0	3	43
5	U19MC906	Professional	Drone Technology	2	0	0	2	15
5	U19MC907	Elective:	Design Thinking and Product Innovation	3	0	0	5	40
	U19CE1002	Open	Municipal Solid Waste Management					
	U19CE1003	Elective:	Energy Efficiency and Green Building					
	U19EC1006		Mobile Technology and its Applications					
	U19EE1002		Energy Conservation and Management					
	U10EE1002		Innovation, IPR and Entrepreneurship					
6	019221003		Development	3	0	0	3	45
	U19EE1004		Renewable Energy Systems					
	U19FT1001		Fundamentals of Fashion Design					
	L10IT1001		Problem Solving Techniques using Java					
	019111001		Programming					
	U19ME1004		Renewable Energy Sources					

	Practical											
7	U19MC604	Image Processing Laboratory	0	0	2	1	30					
8	U19MC605	3D Modelling and Analysis laboratory	0	0	2	1	30					
9	U19GE601	Soft Skill and Aptitude – IV	0	0	2	1	30					
10	U19MC606	Mini Project – II	0	0	2	1	30					
	Total Credits 22											

Approved By

Chairperson, Mechatronics Engineering BoS	Member Secretary, Academic Council	Chairperson, Academic Council & Principal
Dr.P.Suresh	Dr.R.Shivakumar	Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/ Mechatronics Engineering, Sixth Semester BE MCT Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VII under Regulations 2019 Branch: Mechatronics Engineering

								Total
S. No	Course Code		Course Title	Lecture	Tutorial	Practical	Credit	Contact
			ļ.					Hours
	.		Theory			-	н	
1	U19GE701 🖊	Profession	al Ethics and Human Values 🖌	3 /	0	0	3 /	45
2	U19MC701 /	Total Qua	ity Management 🖌	3 🗸	0	0	3 🖊	45
3	U19MC702 🧹	Robot Pro	gramming and Applications	3 /	0	0	3 🖌	45
4	U19MC909	Profession	essional Elective - Agriculture Automation		0	0	3	45
5	U19MC922	Profession	al Elective - Automotive Mechatronics	3	0	0	3	45
	U19BM1002 🖉		Basic Life Support 🖊					
	U19CE1001 /		Building Services and Safety Regulations 🖌					
	U19CE1004 <		Disaster Management /				×	
	U19CS1002 /		Cloud Computing 🖌					
	U19CS1003 /		Internet of Things /				*	
6	U19EC1006 /	Open	Mobile Technology and Its Applications /	2/	0	0	2	15
	U19EC1007 /	Elective	CMOS VLSI Design /		0	0	3	TJ /
	U19EE1003		Innovation, IPR and Entrepreneurship					
			Development				5	
	U19EE1004 /	×	Renewable Energy Systems 🥒					
- 1	U19FT1001 🗸		Fundamentals of Fashion Design /		7	9		
	U19ME1002		Industrial Safety	-				

05.07.2023

R26

Regulations-2019

ME

	U19ME1004	Renewable Energy So	urces					
			Practical					
7	U19MC703 / Robo	otics Laboratory /		0	0	3	1.5	45 /
8	U19MC704 / Mini	Project-III /		0	0	3 (1.5	45
	Total Credits							

Approved By

Chairperson, Mechatronics Engineering BoS

Dr.P.Suresh

Mivallurar

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to: -

HOD/ Mechatronics Engineering, Seventh Semester B.E MCT Students and Staff, COE

05.07.2023

Regulations-2019

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VIII Regulations 2019 Branch: Mechatronics Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
		Practical					
1	U19MC801	Project Work	0	0	24	12	360
				То	tal Credits	12 /	360

Approved By

Chairperson, Mechatronics Engineering BoS **Dr.P.Suresh**

Member Secretary, Academic Council

Dr.R.Shivakumar

2 Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

MCT

Copy to:-

HOD/ Mechatronics Engineering, Eighth Semester BE MCT Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester I under Regulations 2019 (CBCS) Branch: Mechatronics Engineering

S.No.	Course Code	Course Title	L	Т	Р	С	Category
		Theory					
1	U19ENG101B	English for Engineers-I	1	0	2	2	HS
2	U19MAT102A	Linear Algebra and Calculus	3	1	0	4	BS
3	U19PHY103B	Engineering Physics	3	0	0	3	BS
4	U19CHE104G	Engineering Chemistry	3	0	0	3	BS
5	U19PPR105	Problem solving using Python Programming	3	0	0	3	ES
6	U19EGR106	Engineering Graphics **	2	0	2	3	ES
		Practical					
7	U19PCL108B	Physics and Chemistry Laboratory#	0	0	2	1	BS
8	U19PPL111	Python Programming Laboratory	0	0	2	1	ES
9	U19GE101	Basic aptitude-I	0	0	2	0	EEC
		Te	otal	Crec	lits	20	
		Optional Language Elective)*				
10	U190LE1101	French					
11	U190LE1102	German	0	0	2	1	HS
12	U190LE1103	Japanese					

*Students may opt for foreign languages viz., German/French/Japanese with additional one credit (Not accounted for CGPA calculation)

Laboratory classes on alternate weeks for physics and chemistry. The lab examination will be conducted separately for 50 marks each with 2 hours durations.

** The examination will be conducted for 3 hours through CAD software and manual drafting.

Approved By

Chairperson,	Chairperson,	Member Secretary,	Chairperson,
Science and	Mechatronics	Academic Council	Academic Council
Humanities BoS	Engineering	Dr.R.Shivakumar	& Principal
Dr.M.Renuga	BoS		Dr.S.R.R.Senthil
	Dr.P.Suresh		Kumar

Copy to:-

HOD/ Mechatronics Engineering, First Semester BE MCT Students and Staff, COE

U19ENG101B - ENGLISH FOR ENGINEERS – I COMMON TO CSE, ECE, EEE, MCT, BME

LTPC

1 0 2 2

Course Outcomes: At the end of course, the students will be able to

- 1. Use grammatical components effectively in both written and spoken communication
- 2. Develop speaking skills for self-introduction, delivering speeches and technical presentation.
- 3. Speak effectively in real time and business situations
- 4. Write email, formal letters and descriptions of graphics
- 5. Develop skills for writing reports and proposals, and for general purpose and technical writing.

UNIT I

- General Vocabulary, Parts of speech
- Self-introduction personal information, name, home background, study details, area of interest, hobbies, strengths and weaknesses, projects and paper presentations, likes and dislikes in food, travel, clothes, special features of home town.
- Instructions, Email fixing an appointment, cancelling appointments, conference details, hotel accommodation, order for equipment, training programme details, paper submission for seminars and conferences
- Paragraph writing Describing defining providing examples or evidences

UNIT II

- Tenses, active and passive voice
- Welcome address, vote of thanks, special address on specific topic.
- Checklists, letter writing business communication, quotations, placing orders, complaints, replies to queries from business customers, inviting dignitaries, accepting and declining invitations

UNIT III

- Prefixes and Suffixes
- Mini presentation in small groups of two or three, on office arrangements, facilities, office functions, sales, purchases, training recruitment, advertising, applying for financial assistance, applying for a job, team work, discussion, presentation.
- Job application letter and resume, recommendations,

UNIT IV

- Modal verbs and probability, concord
- Situational Role Play between examiner and candidate, teacher and student, customer and sales manager, hotel manager and organiser, team leader and team member, bank manager and candidate, interviewer and applicant, car driver and client, industrialist and candidate, receptionist and appointment seeker, new employee and manager, employee and employee, p.a. and manager, schedule for training
- Note making, Proposal

UNIT V

- If conditionals
- Situational Role Play Asking for directions, seeking help with office equipment, clarifying an error in the bill, job details, buying a product, selling a product, designing a website, cancelling and fixing appointments, hotel accommodation, training facilities, dress code, conference facilities.
- Memo, technical report writing, feasibility reports, accident report, survey report

TOTAL: 45 hours

Speaking test will be conducted for 20 marks externally and evaluated along with English for Engineers – I in the End Semester Valuation.

TEXT BOOK:

• Technical English I & II, Dr. M. Renuga et al. Sonaversity, 2016

Extensive Reading

- The Story of Amazon.com- Sara Gilbert, published by Jaico
- The Story of Google Sara Gilbert, published by Jaico

Reference

- Norman Whitby, Business Benchmark Pre-Intermediate to Intermediate, Students Book, Cambridge University Press, 2006.
- A Course in Communication Skills, P. Kiranmai Dutt, Geetha Rajeevan, C. L. N. Prakash, published by Cambridge University Press India Pvt. Ltd.

U19MAT102A - LINEAR ALGEBRA AND CALCULUS Common to CIVIL, MECH, EEE, CSE, IT and MCT

LTPC

3 1 0 4

Course Outcomes: At the end of the course, the students will be able to

- find the rank of the matrix and solve linear system of equations by direct and indirect methods
- apply the concepts of vector spaces and linear transformations in real world applications
- apply the concepts of eigen values and eigen vectors of a real matrix and their properties in diagonalization and the reduction of a real symmetric matrix from quadratic form to canonical form
- find the Taylor's series expansion, Jacobians and the maxima and minima of functions of two variables
- apply appropriate techniques of multiple integrals to find the area and volume.

UNIT I - LINEAR SYSTEM OF EQUATIONS

Rank of a matrix – Solution of linear system of equations by matrix method, Gauss elimination, Gauss-Jordan, Gauss-Jacobi and Gauss-Seidel methods.

UNIT II - VECTOR SPACES

Vector Space – Linear independence and dependence of vectors – Basis – Dimension – Linear transformations (maps) – Matrix associated with a linear map – Range and kernel of a linear map – Rank-nullity theorem (without proof).

UNIT III - EIGEN VALUES AND EIGEN VECTORS

Eigen values and eigen vectors of real matrices – Properties of eigen values and eigen vectors – Cayley-Hamilton theorem – Diagonalization of real symmetric matrices – Reduction of quadratic form to canonical form.

UNIT IV - MULTIVARIABLE CALCULUS

Functions of several variables – Partial differentiation – Total derivative – Jacobians – Taylor's theorem for function of two variables – Maxima and minima of function of two variables without constraints – Constrained maxima and minima by Lagrange's method of undetermined multipliers.

12

12

12

UNIT V - MULTIPLE INTEGRALS

Double integrals – Change of order of integration – Change of variables from Cartesian to polar coordinates – Area as double integrals in Cartesian coordinates – Triple integrals – Volume as triple integrals in Cartesian coordinates.

Theory: 45 hours; Tutorial: 15 hours TOTAL: 60 Hours

TEXT BOOKS

- 1. T. Veerarajan, "Linear Algebra and Partial Differential Equations", McGraw Hill Publishers, 1st Edition, 2018.
- 2. T. Veerarajan, "Engineering Mathematics for Semesters I & II", McGraw Hill Publishers, 1st Edition, 2019.

REFERENCE BOOKS

- S. Lipschutz and M. L. Lipson, "Linear Algebra", McGraw Hill Publishers, 6th Edition, 2018.
- E. Kreyszig, "Advanced Engineering Mathematics", Wiley Publishers, 10th Edition, Reprint, 2017.
- C. Prasad and R. Garg, "Advanced Engineering Mathematics", Khanna Publishers, 1st Edition, 2018.
- B. V. Ramana, "Higher Engineering Mathematics", McGraw Hill Publishers, 29th Reprint, 2017.
- B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44th Edition, 2018.

U19PHY103B - ENGINEERING PHYSICS (For BE Mechatronics Engineering)

LTPC

3 0 0 3

Course Outcomes: At the end of the course, the students will be able to,

- 1. Discuss the dual nature of matter and radiation and the application of wave nature of particles.
- 2. Describe the basic components of lasers.
- 3. Analyse the relation between arrangement of atoms and material properties.
- 4. Deduce Maxwell's equations using the fundamentals of electromagnetism.
- 5. Elucidate the different modes of heat transfer.

UNIT I - QUANTUM PHYSICS

Origin of quantum mechanics – Limitations of classical theory - Dual nature of matter and radiation.

Particle nature of radiation - Compton effect - Explanation based on quantum theory - Expression for Compton shift (no derivation).

Wave nature of matter - de Broglie waves - Schrödinger's time independent and time dependent wave equations - Physical significance of wave function - Energy and wave function of an electron trapped in one dimensional box.

Application of wave nature of particles - Electron microscope - Comparison of optical and electron microscope - Scanning electron microscope - Limitations of electron microscope.

UNIT II - LASERS

Basic terms - Energy level - normal population - induced absorption (pumping) - population inversion - meta stable state - spontaneous emission - stimulated emission.

Basic *components* of a laser - Active medium - pumping technique - optical resonator **Einstein's theory** - stimulated absorption - spontaneous emission and stimulated emission.

Types of lasers - Solid lasers (Nd:YAG) - Gas lasers (CO_2 laser) - semiconductor laser (homojunction and hetero junction laser)

Holography - Construction and reconstruction of hologram.

UNIT III - CRYSTAL PHYSICS

Importance of crystals - Types of crystals - Basic definitions in crystallography (Lattice –space lattice - unit cell - lattice parameters – basis - crystallographic formula) - Seven crystal systems and fourteen Bravais lattices – Lattice planes and Miller indices – Interplanar distance - d spacing in cubic lattice - Calculation of number of atoms per

9

9

unit cell - Atomic radius - Coordination number and Atomic Packing factor for SC, BCC, FCC and HCP Structures - Polymorphism and allotropy.

Crystal imperfections - Point, line and surface defects - burger vector.

UNIT IV – ELECTROMAGNETISM

Electrostatics - Electric field - Electric field intensity – Field due to discrete and continuous charges – Electric lines of forces – Electric flux – Gauss's law – Divergence of E – Applications of Gauss's law – Curl of E.

Magnetostatics – Magnetic fields – Magnetic Lorentz force – Force experienced by current carrying conductor in magnetic field – Steady currents – Magnetic field due to steady current - Biot - Savart Law - Straight line currents – Ampere's circuital law – Divergence and curl of B – Applications of Ampere's circuital law - Comparison of Magneto statics and Electrostatics.

UNIT V - THERMAL PHYSICS

Heat and temperature - Modes of heat transfer (Conduction, convection and radiation) - Specific heat capacity - thermal capacity and coefficient of linear thermal expansion.

Thermal conductivity - Measurement of thermal conductivity of good conductor -Forbe's method - Measurement of thermal conductivity of bad conductor - Lee's disc method - Radial flow of heat - Cylindrical flow of heat - Practical applications of conduction of heat.

Thermal radiations - Properties of thermal radiations - Applications of thermal radiations.

TOTAL: 45 Hours

TEXT BOOKS

- M.N.Avadhanulu, 'Engineering Physics' S.Chand & Company Ltd, New Delhi (2015)
- D. K. Bhattacharya, Poonam Tandon "Engineering Physics" Oxford University Press 2017.

REFERENCES

- Engineering Physics, Sonaversity, Sona College of Technology, Salem (Revised Edition 2018).
- B. K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning India Pvt. Ltd., Delhi, 2019
- Rajendran, V, and Marikani A, 'Materials science' TMH Publications, (2004) New Delhi.
- Palanisamy P.K, 'Materials science', SciTech Publications (India) Pvt. Ltd., Chennai, Second Edition (2007)

9

U19CHE104G - ENGINEERING CHEMISTRY (For Mechatronics and Biomedical Engineering)

LTPC

3 0 0 3

Course Outcomes: At the end of the course, the students will be able to

- 1. Analyze the impurities of water, their removal methods and explain the conditioning methods for industrial uses.
- 2. Outline the principles and applications of electrochemistry to engineering and technology.
- 3. Analyze the types of corrosion and describe the methods of corrosion control.
- 4. Discuss the principle and applications of surface chemistry and catalysis in engineering and technology.
- 5. Describe the basics of nano chemistry, synthesis, properties and applications of nano materials in engineering and technology.

UNIT I - WATER TECHNOLOGY

Introduction - Characteristics – hardness – estimation of hardness by EDTA method, alkalinity and its estimation - Boiler feed water – requirements – disadvantages of using hard water in boilers – internal conditioning (colloidal, phosphate, calgon and carbonate conditioning methods) – external conditioning – zeolite process, demineralization process, desalination of brackish water by reverse osmosis.

UNIT II - ELECTROCHEMISTRY

Electrode potential - Nernst Equation - derivation and problems based on single electrode potential calculation - reference electrodes - standard hydrogen electrode - calomel electrode – Ion selective electrode - glass electrode - measurement of pH – electrochemical series – significance – electrolytic and electrochemical cells – reversible and irreversible cells – EMF – measurement of emf – potentiometric titrations (redox – Fe²⁺ vs dichromate) – conductometric titrations (acid-base – HCl vs NaOH).

UNIT III - CORROSION AND CORROSION CONTROL

Chemical corrosion - Pilling-Bedworth rule – electrochemical corrosion – mechanism - galvanic corrosion – differential aeration corrosion – factors influencing corrosion – corrosion control – sacrificial anode and impressed cathodic current methods – corrosion inhibitors – protective coatings – preliminary treatment - Paints constituents and their functions – surface conversion coatings – Galvanizing and Tinning.

9

9

UNIT IV - SURFACE CHEMISTRY AND CATALYSIS

Adsorption-types-physical and chemical adsorption – adsorption of gases on solidsadsorption isotherms-Freundlich and Langmuir isotherms-adsorption of solutes from solution – applications of adsorption-role of adsorption in catalytic reactions – basic principles in adsorption chromatography - adsorption in pollution abatement (granular activated carbon and powdered activated carbon) - catalysis-types - characteristics of catalysts - autocatalysis - definition and examples.

UNIT V - NANOCHEMISTRY

Basics - distinction between molecules, nanoparticles and bulk materials - sizedependent properties - nanoparticles: nano cluster, nano rod, nanotube (CNT) and nanowire – Synthesis: precipitation – thermolysis – hydrothermal – solvothermal – electrodeposition - chemical vapour deposition - sol-gel technique - properties and applications of nano materials.

TOTAL: 45 hours

TEXT BOOKS

- P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., 2010 (15th Edition). New Delhi.
- T. Maruthavanan et al., "Engineering Chemistry", Sonaversity, Sona College ٠ of Technology, Salem, Revised Edition 2019.

REFERENCE BOOKS

- H.K. Chopra, A. Parmer, "Chemistry for Engineers", Narosa Publishing • House, New Delhi, 110 002, 2016.
- Kannan P., Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech ٠ Publishing Company Pvt. Ltd., Chennai, 2009.
- B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New • Delhi, 2008.
- Ozin G. A. and Arsenault A. C., "Nanochemistry: A Chemical Approach to • Nanomaterials", RSC Publishing, 2005.

U19PPR105 - PROBLEM SOLVING USING PYTHON PROGRAMMING

LTPC

3 0 0 3

Course Outcome: At the end of course, the students will be able to

- 1. Develop algorithmic solutions to simple computational problems
- 2. Write simple Python programs
- 3. Write programs with the various control statements and handling strings in Python
- 4. Develop Python programs using functions and files
- 5. Analyze a problem and use appropriate data structures to solve it.

UNIT I - ALGORITHMIC PROBLEM SOLVING

Need for computer languages, Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion).

UNIT II - BASICS OF PYTHON PROGRAMMING

Introduction-Python Interpreter-Interactive and script mode -Values and types, variables, operators, expressions, statements, precedence of operators, Multiple assignments, comments, input function, print function, Formatting numbers and strings, implicit/explicit type conversion.

UNIT III - CONTROL STATEMENTS AND STRINGS

Conditional (if), alternative (if-else), chained conditional (if-elif-else). Iteration-while, for, infinite loop, break, continue, pass, else. Strings-String slices, immutability, string methods and operations.

UNIT IV - FUNCTIONS AND FILES

Functions - Introduction, inbuilt functions, user defined functions, passing parameters - positional arguments, default arguments, keyword arguments, return values, local scope, global scope and recursion. Files -Text files, reading and writing files.

UNIT V - DATA STRUCTURES: LISTS, SETS, TUPLES, DICTIONARIES 9

Lists-creating lists, list operations, list methods, mutability list functions, searching and sorting, Sets-creating sets, set operations. Tuples-Tuple assignment, Operations on Tuples, lists and tuples, Tuple as return value- Dictionaries-operations and methods, Nested Dictionaries.

TOTAL: 45 Hours

9 es

9

9

TEXT BOOK

- Reema Thareja, "Problem Solving and Programming with Python", Oxford University Press, 2018.
- Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 (<u>http://greenteapress.com/wp/think-python/</u>)

REFERENCES

- Ashok Namdev Kamthane, Amit Ashok Kamthane, "Programming and Problem Solving with Python", Mc-Graw Hill Education, 2018.
- Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming in Python: An Inter-disciplinary Approach", Pearson India Education Services Pyt. Ltd., 2016.
- Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Private Ltd., 2015.
- Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE Learning, 2012.
- Charles Dierbach, "Introduction to Computer Science using Python: A Computational Problem Solving Focus", Wiley India Edition, 2013.

U19EGR106 - ENGINEERING GRAPHICS

L T P C

2 0 2 3

L3

L 3

L 6

Course Outcomes: Upon completion of this course the students will be able to

- **CO1** Predict the construction of various curves in civil elevation, plan and machine components.
- **CO2** Analyze the principles of projection of various planes by different angle to project points, lines and planes.
- **CO3** Draw the principles of projection of simple solid by the axis is inclined to one reference plane by change of position method.
- **CO4** Understand the interior details of complex components, machineries by sectioning the solid body. Study the development of surfaces for prisms and pyramids.
- **CO5** Draw the projection of three dimensional objects representation of machine structure and explain standards of orthographic views by different methods.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications, Use of drafting instrument, BIS conventions and specifications - Size, layout and folding of drawing sheets, Lettering and dimensioning.

COMPUTER AIDED DRAFTING (Not for Examination)

Importance 2d Drafting, sketching, modifying, transforming and dimensioning.

UNIT I - PLANE CURVES (Manual drafting)

Curves used in engineering practices Conics – Construction of ellipse – Parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves.

UNIT II - PROJECTION OF POINTS, LINES AND PLANE SURFACES L 12 (CAD Software)

Projection of points – Projection of straight lines located in the first quadrant – Determination of true lengths and true inclinations – Projection of polygonal surface and circular lamina inclined to one reference planes.

UNIT III - PROJECTION OF SOLIDS

(CAD Software)

Creation of 3D CAD models of pyramids, prisms and solids of revolutions- Sectional views - (Not for Examination)

Projection of simple solids like prisms – pyramids – cylinder and cone when the axis is inclined to one reference plane by change of position method.

UNIT IV - SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES L 12 (CAD Software)

Sectioning of simple solids like prisms – pyramids, cylinder and cone in simple vertical position by cutting planes inclined to one reference plane and perpendicular to the other, (Obtaining true shape of section is not required). Development of lateral surfaces of simple and truncated solids – Prisms – pyramids –cylinders and cones.

UNIT V - CONVERSION OF ISOMETRIC VIEWS TO ORTHOGRAPHIC L 12

(Manual drafting)

Representation of three dimensional objects – General Principles of Orthographic projection – Need for importance of multiple views and their placement – First angle projection – layout of views – Developing visualization skills through free hand sketching of multiple views from pictorial views of objects.

TOTAL: 60 Hours

TEXT BOOKS

- P. Suresh et al., "Engineering Graphics and Drawing", Sonaversity, Sona College of Technology, Salem, Revised edition, 2012.
- K.V. Natarajan Engineering Graphics by, Chennai, 17th edition 2003.

REFERENCE BOOKS

- Dhananjay A. JoIhe, Engineering Drawing with an introduction to AutoCAD, Tata McGraw Hill Publishing Company Limited, 2008.
- Basant Agarwal and Agarwal C.M., Engineering Drawing, Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- K. R. Gopalakrishnana, Engineering Drawing (Vol. I & II), Subhas Publications, 1998.
- Bertoline& Wiebe fundamentals of graphics communication III edition McGrawhill 2002.

L12

U19PCL108B - PHYSICS AND CHEMISTRY LABORATORY PHYSICS PART

(For Mechatronics Engineering)

L T P C

0 0 2 1

Course Outcomes: At the end of the course, the students will be able to,

- 1. Apply the principle of spectrometry to determine the properties of a given prism.
- 2. Study the change in properties of ultrasonic waves in a liquid medium and determine the characteristics of the liquid.
- 3. Demonstrate the applications of a diode laser to determine the characteristics of a given optical fibre.
- 4. Determine the specific resistance of the given wire using Carey Fosters bridge.
- 5. Determine the band gap of a semiconductor diode.
- 6. Demonstrate by means of an appropriate experiment the poor thermal conductivity of a given bad conductor

LIST OF EXPERIMENTS (PHYSICS PART)

- 1. Determination of dispersive power of the prism for various pairs of colors in the mercury spectrum using a spectrometer.
- 2. Determination of velocity of ultrasonic waves and compressibility of the given liquid using ultrasonic interferometer.
- 3. Determination of laser wavelength, particle size (lycopodium powder), acceptance angle and numerical aperture of an optical fibre using diode laser.
- 4. Determination of specific resistance of a given wire using Carey Foster's bridge.
- 5. Determination of band gap of the given semiconductor diode.
- 6. Determination of the thermal conductivity of a bad conductor using Lee's Disc apparatus.

(Any five experiments may be conducted from the above list)

Total: 30 Hours

U19PCL108B - PHYSICS AND CHEMISTRY LABORATORY CHEMISTRY PART

(For Mechatronics Engineering)

L T P C

0 0 2 1

Course Outcomes: At the end of the course, the students will be able to,

- Estimate the amount of total, temporary and permanent hardness in the given water sample
- Analyse the different types of alkalinity and determine their amount in the given water sample
- Estimate the amount of hydrochloric acid present in the given solution using conductivity meter.
- Estimate the amount of hydrochloric acid present in the given solution using pH metry.
- Describe the estimation of ferrous iron present in the given solution using potentiometer.
- Evaluate the iron content of the water by spectrophotometry.

List of Experiments (Chemistry part)

- 7. Estimation of hardness of water sample by EDTA method.
- 8. Estimation of alkalinity of water sample by indicator method.
- 9. Estimation of HCl by conductometry. (HCl vs NaOH)
- 10. Estimation of HCl by pH metry.
- 11. Estimation of ferrous ion by potentiometric titration.
- 12. Determination of iron content in water by spectrophotometric method (Any five experiments may be conducted from the above list)

Total: 30 Hours

U19PPL111 - PYTHON PROGRAMMING LABORATORY

L T P C 0 0 2 1

Course Outcomes: At the end of course, the students will be able to

- 1. Implement the algorithms using basic control structures in Python
- 2. Develop Python programs to use functions, strings and data structures to solve different types of problems
- 3. Implement persistent storing information through file operations

LIST OF EXPERIMENTS

- 1. Draw flowchart using any open source software.
- 2. Implement programs with simple language features.
- 3. Implement various branching statements in python.
- 4. Implement various looping statements in python.
- 5. Develop python programs to perform various string operations like concatenation, slicing, indexing.
- 6. Implement user defined functions using python.
- 7. Implement recursion using python.
- 8. Develop python programs to perform operations on list and tuples
- 9. Implement dictionary and set in python
- 10. Implement python program to perform file operations.

TOTAL: 30 Hours

U19GE101 - BASIC APTITUDE - I (Common to All Departments)

L T P C 0 0 2 0

Course Outcomes: At the end of course, the students will be able to

- 1. Solve fundamental problems in specific areas of quantitative aptitude
- 2. Solve basic problems in stated areas of logical reasoning
- 3. Demonstrate rudimentary verbal aptitude skills in English with regard to specific topics

1. Quantitative Aptitude and Logical Reasoning

Solving simple problems with reference to the following topics:

- a. Numbers HCF & LCM
- b. Decimal fractions
- c. Square roots & cube roots
- d. Surds & Indices
- e. Logarithms
- f. Percentage
- g. Averages
- h. Coding and Decoding & Visual language

2. Verbal Aptitude

Demonstrating plain English language skills with reference to the following topics:

- a. Synonyms
- b. Antonyms
- c. Verbal analogy
- d. Editing passages
- e. Sentence filler words

TOTAL: 30 hours

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester I under Regulations 2019 (CBCS) Branch: Mechanical Engineering

S.No	Course Code	Course Title	L	Т	Р	С	Category
		Theory					
1	U19CHE104E	Chemistry for Mechanical Engineering	3	1	0	4	BS
2	U19MAT102A	Linear Algebra and Calculus	3	1	0	4	BS
3	U19EE106	Electrical Drives and ARM Processor	d ARM 3 0 0 3		ES		
4	U19EGR106	Engineering Graphics**	2	0	2	3	ES
		Practical					
5	U19CHL109	Chemistry Laboratory 0 0 3		1.5	BS		
6	U19EEL114	Electrical Drives and ARM Processor Laboratory		0	4	2	ES
7	U19WPL112	Workshop Practice	0	0	2	1	ES
8	U19ENL115	Communication Skills in English - I	0	0	2	1	HS
9	U19GE101	Basic Aptitude - I	0	0	2	0	EEC
		Total Credits				19.5	
		Optional Language Elective	*				
10	U190LE1101	French					
11	U190LE1102	German	0	0	2	1	HS
12	U190LE1103	Japanese					

*Students may opt for foreign languages viz., German/French/Japanese with additional one credit (Not accounted for CGPA calculation)

** The examination will be conducted for 3 hours through CAD software and manual drafting.

Approved By

Chairperson,	Chairperson,	Member Secretary,	Chairperson,
Science and	Mechanical	Academic Council	Academic Council
Humanities	Engineering BoS		& Principal
BoS			
Dr.M.Renuga	Dr.D.Senthilkumar	Dr.R.Shivakumar	Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Mechanical, First Semester BE Mechanical Students and Staff, COE

S.N	Course Code	Course Title	L	Т	Р	С	Category	Total Contact Hours
		Theory						
1	U19ENG201B	English for Engineers -Il	1	0	2	2	HSMC	45 (15L+30P)
2	U19MAT202A	Differential Equations and Vector Calculus	3	1	0	4	BSC	60
3	U19PHY203F	Physics for electron devices	3	0	0	3	BSC	45
4	U19CHE204E	Modern materials	3	0	0	3	BSC	45
5	U19MCT201	Engineering Mechanics	3	0	0	3	ESC	45
6	U19MCT202	Basic Electrical Engineering	3	0	45			
		Practical						
7	U19WPL212	Workshop Practice	0	0	2	1	ESC	30
8	U19MCT203	Basic Electrical Engineering and Devices Laboratory	0	0	4	2	ESC	60
9	U19GE201	Basic Aptitude – II	0	0	2	0	EEC	30
			Т	otal Cr	edits	21		
		Optional Language El	ective*		1.00			1.5
10	U190LE1201	French						
11	U190LE1202	German		0	2	1	HSMC	30
12	U190LE1203	Japanese					listic	30

Sona College of Technology, Salem – 636 005 (An Autonomous Institution) Courses of Study for BE / B Tech Semester II under Regulations 2019 (CBCS) Branch: Mechatronics Engineering

*Students may opt for foreign languages viz., German/French/Japanese with additional one credit (Not accounted for CGPA calculation)

Approved by

mohan	12000 mill	Thirallmar	
Chairperson, Science and Humanities BoS	Chairperson, Mechatronics Engineering BoS	Member Secretary, Academic Council	Chairperson, Academic Council & Principal
Dr. M. Renuga	Dr. P. Suresh	Dr. R. Shivakumar	Dr. S. R. R. Senthil Kumar

Copy to:-

HOD/ Mechatronics Engineering, First Semester BE MCT Students and Staff, COE

04.06.2021

B.E/B. Tech Regulations-2019

U19ENG201B- English for Engineers – II

First year II semester

MCT

Course Outcome: At the end of course, the students will be able to

- 1. Frame sentences correctly, both in written and spoken forms of language with accuracy and fluency.
- 2. Develop and demonstrate listening skills for academic and professional purposes.
- 3. Draw conclusions on explicit and implicit oral information.
- 4. Develop effective reading skills and reinforce language skills required for using grammar and building vocabulary.
- 5. Read for gathering and understanding information, following directions and giving responses.

	COURSE														
	OUTCOMES				PR	OGR	AM	ME O	UTC	OME	S				
		1	2	3	4	5	6	7	8	9	10	11	12	Ps o1	Ps o2
1	Frame sentences correctly, both in written and spoken forms of language with accuracy and fluency	2	1	2	3	2	3	3	3	3	3	3	3	3	3
2	Develop and demonstrate listening skills for academic and professional purposes	2	2	2	3	2	3	3	3	3	3	3	3	3	3
3	Draw conclusions on explicit and implicit oral information	3	2	2	3	2	3	3	3	3	3	3	3	3	3
4	Develop effective reading skills and reinforce language skills required for using grammar and building vocabulary	3	3	2	3	2	3	3	3	3	3	3	3	3	3
5	Read for gathering and understanding information, following directions and giving responses.	3	3	2	3	2	3	3	3	3	3	3	3	3	3

UNIT –I

- Cause and effect expressions, adjectives, comparative adjectives
- Listening to conversations, welcome speeches, lectures and description of equipment
- Listening to different kinds of interviews (face-to-face, radio, TV and telephone interviews)
- Understanding notices, messages, timetables, advertisements, graphs, etc.
- Reading passages for specific information transfer

UNIT – II

- Prepositions and dependent prepositions
- Understanding short conversations or monologues
- Taking down phone messages, orders, notes etc
- Listening for gist, identifying topic, context or function
- Reading documents for business and general contexts and interpreting graphical representations

UNIT – III

- Collocations
- Listening comprehension, entering information in tabular form
- Error correction, editing mistakes in grammar, vocabulary, spelling, etc.
- Reading passage with multiple choice questions, reading for gist and reading for specific information, skimming for comprehending the general idea and meaning and contents of the whole text

UNIT – IV

- Articles, adverbs
- Intensive listening exercises and completing the steps of a process.
- Listening exercises to categorise data in tables.
- Short reading passage: gap-filling exercise related to grammar, testing the understanding of prepositions, articles, auxiliary verbs, modal verbs, pronouns, relative pronouns and adverbs, short reading passage with multiple choice questions.

UNIT – V

- Pronouns
- Listening to extended speech for detail and inference
- Listening and developing hints
- gap-filling exercise testing the knowledge of vocabulary, collocations, dependent prepositions, grammatical structures
- Short reading passages for sentence matching exercises, picking out specific information in a short text

TOTAL: 45 hours

The listening test will be conducted for 20 marks and reading for 20 marks internally and evaluated along with English for Engineers – II in the End Semester Valuation.

Textbook:

Technical English I & II, Dr. M. Renuga et al. Sonaversity, 2016

Extensive Reading

- 1. Who Moved my Cheese? Spencer Johnson-G. P. Putnam's Sons
- 2. Discover the Diamond in You Arindham Chaudhari Vikas Publishing House Pvt. Ltd.

Reference

- 1. Norman Whitby, Business Benchmark Pre-Intermediate to Intermediate, Students Book, Cambridge University Press, 2006.
- 2. A Course in Communication Skills, P. Kiranmai Dutt, Geetha Rajeevan, C. L. N. Prakash, published by Cambridge University Press India Pvt. Ltd.

Sona College of Technology

Department of Mathematics

B. E. / MECHATRONICS ENGINEERING

SEMESTER – II	DIFFERENTIAL EQUATIONS AND	L	T	P	C
U19MAT202A	VECTOR CALCULUS	3	1	0	4

COURSE OUTCOMES

At the end of the course, the students will be able to

- 1. apply the classical methods to solve linear ordinary differential equations.
- 2. apply the appropriate numerical methods to solve ordinary differential equations.
- 3. apply the Laplace transforms technique to solve ordinary differential equations.
- 4. apply the classical method to solve partial differential equations.
- 5. apply the concepts of vector differentiation and integration to determine the line, surface and volume integrals.

		(3/2/1 i	ndicate	es stren	CO / gth of	PO, P correla	SO Ma tion) 3	pping -Stron	g, 2-Me	dium, 1	-Weak		
~~~			Prog	ramme	Outco	mes (P	Os) an	d Prog	ramme	Specifi	ic Outco	me (PS)	(aC	10.00
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		3	2						3	2	3	3
CO2	3	3		3	2				-	1	3	2	3	3
CO3	3	3		3	2					1	3	2	3	3
CO4	3	3	1.5.11	3	2				1		3	2	3	3
CO5	3	3		3	2		1923	NUT Y	1		3	2	3	3

#### UNIT-I ORDINARY DIFFERENTIAL EQUATIONS

12

Linear higher order ordinary differential equations with constant coefficients - Cauchy's and Legendre's homogeneous linear ordinary differential equations - Method of variation of parameters.

#### UNIT-II NUMERICAL SOLUTION OF ORDINARY **DIFFERENTIAL 12 EQUATIONS**

Single Step Methods: Taylor's series - Euler and Modified Euler methods - Fourth order Runge - Kutta method for solving first and second order ordinary differential equations. Multi Step Methods: Milne's and Adam's predictor-corrector methods.

#### UNIT-III LAPLACE TRANSFORMS

12

Laplace transform: Conditions for existence - Transform of elementary functions - Basic properties -Transform of derivatives and integrals - Transform of unit step function and impulse function - Initial and final value theorems - Transform of periodic functions.

Inverse Laplace transform: Standard results - Statement of convolution theorem and its applications -Solution of linear second order ordinary differential equations with constant coefficients using Laplace transform.

10. 05. 2019

### B. E. / B. Tech. Regulations 2019

#### Sona College of Technology

#### UNIT – IV PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Lagrange's linear equation – Solution of standard types of first order partial differential equations – Linear partial differential equations of second and higher order with constant coefficients.

#### UNIT - V VECTOR CALCULUS

Vector differentiation: Scalar and vector valued functions - Gradient, directional derivative, divergence and curl - Scalar potential.

Vector integration: Line, surface and volume integrals – Statements of Green's, Stoke's and Gauss divergence theorem – Simple applications involving squares, rectangles, cubes and rectangular parallelopiped.

Theory: 45 Hours

Tutorial: 15 Hours

Total: 60 Hours

**Department of Mathematics** 

#### TEXT BOOKS:

- T. Veerarajan, "Linear Algebra and Partial Differential Equations", McGraw Hill Publishers, 1st Edition, 2018.
- T. Veerarajan, "Engineering Mathematics for Semesters I & II", McGraw Hill Publishers, 1st Edition, 2019.

#### **REFERENCE BOOKS:**

- 1. J. Stewart, "Calculus", Cengage Publishers, 8th Edition, 2016.
- C. Prasad and R. Garg, "Advanced Engineering Mathematics", Khanna Publishers, 1st Edition, 2018.
- E. Kreyszig., "Advanced Engineering Mathematics", Wiley Publishers, 10th Edition, Reprint, 2017.
- 4. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44th Edition, 2018.
- 5. B. V. Ramana, "Higher Engineering Mathematics", McGraw Hill Publishers, 29th Reprint, 2017.

NO

Prof. S. JAYABHARATHI Head / Department of Mathematics Sona College of Technology Salem - 636 005

af. f.m.

Dr. M. RENUGA BoS - Chairperson Science and Humanities Sona College of Technology Salem – 636 005

B. E. / B. Tech. Regulations 2019

10. 05. 2019

12
Course Code: Course Name:

#### (for Mechatronics Engineering)

#### **COURSE OUTCOMES:**

At the end of the course, the students will be able to,

- **CO1** Differentiate the electrical and thermal conductivity of metals.
- **CO2** Elucidate the classification and theory of semiconducting materials.
- CO3 Discuss the applications of diode as rectifier, photodiode, LED and solar cell.
- **CO4** Elucidate the application of bipolar transistor as amplifier.
- **CO5** Evaluate the novel properties of metallic glasses, shape memory alloys and nanomaterials.

	CO / PO, PSO Mapping (3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak Programme Outcomes (POs) and Programme Specific Outcome (PSOs)													
COs, POs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02												PSO2		
PSOs														
Mapping														
CO – 1	3	2	-	-	-	-	-	-	-	-	2	2	-	3
CO – 2	3	2	-	-	-	-	-	-	-	-	2	2	-	3
CO – 3	3	2	-	-	-	-	-	-	-	-	2	2	-	3
CO – 4	3	2	-	-	-	-	-	-	-	-	2	2	-	3
CO - 5	3	2	-	-	-	-	-	-	-	-	2	2	-	3

#### **Unit 1 Conducting materials**

9

Usage of conducting materials - basic definitions (electrical resistance - conductance - resistivity - conductivity).

**Classical free electron theory of metals** - postulates of classical free electron theory - microscopic form of Ohm's law - Electrical conductivity - definition and expression for electrical conductivity - thermal conductivity - definition and expression for thermal conductivity

- Wiedemann - Franz law and Lorentz number - Success and failure of classical free electron theory.

**Quantum free electron theory -** Drawbacks of quantum free electron theory - origin of energy bands - band theory of solids ( qualitative treatment only) - Fermi energy and Fermi distribution function - Effect of temperature on Fermi function - Density of energy states - carrier concentration in metals.

#### **Unit 2 Semiconducting Materials**

9

Properties of semiconductors - Classification of semiconductors - Intrinsic and extrinsic semiconductors - Elemental and compound semiconductors.

**Intrinsic semiconductor** - two types of charge carriers - Energy band diagram of intrinsic semiconductors (at T = 0 K and T > 0 K) - Expression for number of electrons in conduction band - Expression for number of holes in valence band - Law of mass action and intrinsic carrier concentration - Fermi level - Variation of Fermi level with temperature - electrical conductivity - band gap determination.

**Extrinsic semiconductors** - Draw backs of intrinsic semiconductors – Types of extrinsic semiconductors – 'n'-type and 'p'-type semiconductors – Energy band diagram of 'n' type and 'p' type semiconductors (at T=0 K and T>0 K) – Carrier concentration of extrinsic semiconductors (Qualitative Treatment only) – Hall effect –Determination of Hall coefficient – Applications.

#### Unit 3 PN junction diode and optoelectronic devices

**PN junction diode** - Formation of p-n junction - p-n junction diode- p-n junction diode under forward bias- p-n junction diode under reverse bias-Application of junction diode as rectifier-Half wave rectifier- full wave rectifier- bridge rectifier-Zener diode- Zener diode as voltage regulator.

**Optoelectronic devices** - Photo diodes- types of photo diodes- Photo detector-PIN diode-Avalanche photo diode-Light emitting diode (LED) - LED- principle –construction- working-Solar cell- principle –construction- working.

#### Unit 4 Bipolar junction transistors and amplifiers

**Bipolar junction transistors** - npn and pnp transistors- Unbiased npn transistor – Biased npn transistor –Transistor currents-Transistor configuration- common base configuration-common emitter configuration-common collector configuration.

#### 9

9

**Amplifiers** - Transistor as amplifier-introduction to Field effect transistors (FET) - Types of field effect transistors- Junction field effect transistor (JFET) –Metal oxide field effect transistor (MOSFET).

#### **Unit 5 New Engineering Materials:**

9

Metallic glasses - Preparation, properties and applications.

**Shape memory alloys (SMA)** - Characteristics, properties of NiTi alloy, application, advantages and disadvantages of SMA.

**Nanoscience and Nanotechnology** - Significance of nanoscale - different types of nanostructures (0-D, 1-D, 2-D and 3-D) – Fabrication of nanomaterials - Ball milling and Chemical vapour deposition technique (CVD).

**Carbon nanotubes** – structure - properties and applications – fabrication - pulsed laser deposition method.

#### Lecture: 45, Tutorial: 00, Total: 45 Hours

#### **Text Book:**

- 1. M.N.Avadhanulu, 'Engineering Physics' S.Chand & Company Ltd, New Delhi (2015)
- B. K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning India Pvt. Ltd., Delhi, 2012.

#### **References:**

- 1. Physics for Electrical and Electronics Engineering, Sonaversity, Sona College of Technology, Salem (Revised Edition 2016).
- 2. Rajendran, V, and Marikani A, 'Materials science' TMH Publications, (2004) New Delhi.
- Palanisamy P.K, 'Materials science', SciTech Publications (India) Pvt. Ltd., Chennai, Second Edition (2007)
- 4. M. Arumugam, 'Materials Science' Anuradha Publications, Kumbakonam, (2006).

#### **COURSE OUTCOMES**

At the end of the course, the student will be able to,

- **CO1**: Analyze the types of polymers, polymerization reactions, polymerization techniques and fabrication methods of polymers for engineering applications.
- **CO2**: Analyze the types and methods of preparing conducting polymers.
- **CO3**: Explore different methodologies to synthesize nanostructured composites materials.
- **CO4**: Analyze the different types of electrochemical processes carried out in electronic industries.
- **CO5**: Compare the working principles of various organic electronic devices.

					~									
					C	0 / PO	, PSO M	4appin	g					
		(3/2/1	indica	tes str	ength	of cor	relatior	i) 3-St	rong,	2-Med	um, 1-	Weak		
	Programme Outcomes (POs) and Programme Specific Outcome (PSOs)													
COs, POs	P01	PO2	PO3	<b>PO4</b>	P05	P06	P07	<b>PO8</b>	POS	PO10	P011	P012	PSO1	PSO2
PSOs Mapping														
CO - 1	3	3												3
CO – 2	3	3												3
CO – 3	3	3												3
CO – 4	3	3												3
CO - 5	3	3												3
UNIT	UNIT I: POLYMER CHEMISTRY 09													

#### **UNIT I: POLYMER CHEMISTRY**

Nomenclature of Polymers – Functionality – Types of Polymerization-addition-condensation and copolymerization - Classification of Polymers - Free Radical mechanism of addition polymerization - Properties of Polymers- Tg - tacticity - Methods of Polymerization: emulsion and suspension - Plastics: Moulding constituents of plastic - Moulding of plastics into articles-Injection-Compression and Blow moulding – Thermoplastic and Thermosetting Resins.

#### UNIT II: CONDUCTING POLYMERS

Introduction - Structural characteristics and doping concept in metals and metal oxide nanoparticles - Charge carriers and conducting mechanism - Classification of conducting polymers: Intrinsic and extrinsic conducting polymers - Synthesis of conducting polymers bulk and solution polymerization - Applications of conducting polymers in corrosion protection and sensors.

#### UNIT III: NANOSTRUCTURED COMPOSITES

09

Definition of nanocomposites – Nanofillers: Classification of nanofillers, Synthesis and properties of nanofillers – Synthesis of nanocomposites by physical methods - direct mixing and solution mixing - Chemical methods - Microemulsion synthesis, Microwave assisted synthesis and Sonochemical assisted synthesis - Types of nanocomposites - Core-Shell nanostructure, Organic-Inorganic hybrid nanocomposites, Quantum dot (QDs) synthesis.

# UNIT IV: ELECTROCHEMICAL PROCESSES IN THE FABRICATION OF ELECTRONIC DEVICES 09

Electroplating – Principle and process - plating parameters- current and energy efficiency - Electroplating of Nickel - Fundamentals of electro less deposition – electro less plating of Nickel, fabrication of PCB's - Electrochemical etching of copper from PCBs - Anodizing - definition, principle and working methodology of anodized aluminium - Chemical sensors - optical and heat sensors – definitions and applications.

#### UNIT V: ORGANIC ELECTRONIC MATERIALS

09

Organic semiconducting materials – working principle and advantages over inorganic semiconducting materials - p-type and n-type organic semiconducting materials - Pentacene Fullerenes-C-60 – Organic dielectric material – definition - working principle and examples - Polystyrene – PMMA – Organic Light Emitting Diodes (OLEDs): construction, working principle and applications – Organic transistors: construction, working principle and applications in electronic industries.

#### **TOTAL: 45 HOURS**

#### **Text Books**

- 1. Hagen Klauk, Organic Electronics: Materials, Manufacturing and Applications, Wiley VCH. 2006.
- 2. A.P. Uthirakumar et.al, "Modern Materials", Sonaversity, Sona College of Technology, 2019.

### **Reference Books**

- 1. H.K. Chopra, A. Parmer, "Chemistry for Engineers", Narosa Publishing House, New Delhi, 110 002, 2016.
- 2. Nanostructured Materials and Nanotechnology II, Eds. Sanjay Mathur and Mrityunjay Singh, Willey, 2008.
- 3. Gowariker V.R, Viswanathan N.V. and Jayadev Sreedhar, Polymer Scinece, New age International P (Ltd), Chennai, 2006.
- 4. Nanostructured Materials and Nanotechnology II, Eds. Sanjay Mathur and Mrityunjay Singh, Willey, 2008.

Cours	se Out	comes												
After	succe	ssful co	mpleti	on of t	his cou	rse, the	studer	ts sho	uld be	able to				
CO	1: A	nalyse t	he forc	es in st	atically	determ	ninate s	tructur	es usin	g scalai	and ve	ector a	nalytica	ıl
	te	chnique	es.											
CO	<b>2:</b> E:	xamine	the con	dition	for equi	ilibriun	n of rigi	d body	⁷ using	free bo	dy diag	gram.		
CO	3: Ev	aluate t	he effe	ct of fri	ction of	bodies	under	equilib	orium c	onditio	n.			
CO	4: D	Determine the centroid, moment of inertia and polar moment of inertia of simple and												
	composite sections.													
CO	<b>CO5:</b> Analyse the motion of a body with force and without force causing the motion.													
Pre-re	Pre-requisite													
	I	Engineer	ring Ph	ysics										
					(	CO/PO,	, PSO N	<b>Aappin</b>	g					
(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak														
60.		Programme Outcomes (POs) and Programme Specific Outcome (PSOs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	D10 PO11 PO12 PSO1 PSO			
CO1	3	3	3	2		2	2			1		1	3	2
CO2	3	3	3	2		2	2			1		2	3	2
CO3	3	3	3	2		2	2			1		2	3	2
CO4	3	3	3	2		2	2			1		1	3	2
CO5	3	3	3	2		2	2			1		2	3	2
					Cou	irse As	sessme	nt metl	hods					•
				I	Direct							Indir	ect	
Interr	nal test	: I (8)			Online	e test (6)	)							
Interr	nal test	: II (8)			Attend	lance (5	5)				Cou	reo on	1 curvo	<b>x</b> 7
Interr	nal test	: III (8)			End se	mester	Examin	nation	(60)		Cou	iise en	L SUIVE	у
Assig	nment	t/semina	ar/Quiz	(5)										
Unit 0	Jnit 01: BASICS & STATICS OF PARTICLES 9 Hours													

Introduction – Units and Dimensions – Laws of Mechanics – Lame's theorem, Parallelogram and<br/>triangular Law of forces – Vectors – Vectorial representation of forces and moments – Coplanar Forces<br/>– Resolution and Composition of forces – Equilibrium of a particle - Forces in space – Equilibrium of a<br/>particle in space – Equivalent systems of forces – Principle of transmissibility – Single equivalent force.Unit 02: EQUILIBRIUM OF RIGID BODIES IN 2 DIMENSIONS9 Hours

Free body diagram – Types of supports and their reactions – requirements of stable equilibrium – Moments and Couples – Moment of a force about a point – Varignon's theorem – Equilibrium of Rigid

bodies in two dimensions.												
Unit 03: FRICTION			9 Hours									
Frictional force – Laws of	f Coulomb frictio	n – Angle of friction – co	one of friction – Equilibrium of									
bodies on inclined plane.												
Unit 04: PROPERTIES OF	SURFACES ANI	D SOLIDS	9 Hours									
Determination of Areas ar	d Volumes – Firs	t moment of area and the G	Centroid of sections – Rectangle,									
circle, triangle from integ	ration – T sectio	n, I section, Hollow section	on by using standard formula.									
Second and product mom	ents of plane area	– Rectangle, triangle, circl	le from integration – T section, I									
section by using standard	l formula – Paral	lel axis theorem and perp	endicular axis theorem – Polar									
moment of inertia.			I									
Unit 05: DYNAMICS OF	PARTICLES		9 Hours									
Displacements, Velocity a	nd acceleration, t	their relationship – Rectili	near and Curvilinear motion -									
Newton's law - Work Er	nergy Equation of	f particles – Impulse and	Momentum- Impact of elastic									
bodies.												
Theory: 45 Hrs	Tutorial:	Practical:	<b>Total Hours: 45 Hrs</b>									
TEXT BOOKS												
1. Beer, F.P and Johns	on Jr. E.R. "Vecto	r Mechanics for Engineers:	Statics and Dynamics",									
McGraw-Hill Inter	national 10th Edit	ion, 2013.	-									
2. Dr. N. Kottiswaran	, "Engineering Me	echanics (Statics and Dyna:	mics)" ,Sri Balaji Publications									
10th edition 2010.												
REFERENCES												
1. Rajasekaran, S, San	karasubramanian	, G., "Fundamentals of Eng	gineering Mechanics", Vikas									
Publishing House I	Pvt. Ltd., (2011).											
2. Hibbeller, R.C., "En	ngineering Mecha	nics", Vol. 1 Statics, Vol. 2	Dynamics, Pearson Education									
Asia Pvt. Ltd., (201	5).											
3. Palanichamy, M.S.,	Nagam, S., "Engi	neering Mechanics – Static	s & Dynamics", Tata McGraw-									
Hill, (2004).												
4. MeriamJ.L,KraigeL	G,"Engineering N	Mechanics-Statics"6th Edit	ion, Wiley, 2017.									
5. Irving H. Shames, 4	5. Irving H. Shames, "Engineering Mechanics – Statics and Dynamics", IV Edition– Pearson											
Education Asia Dev	Education Asia Pvt. Ltd., (2006).											
Education Asia PV	Education Asia PVI. Ltd., (2006).											
6. Kumar, K.L., "Engi	neering Mechanic	s", 3rd Revised Edition, Ta	ata McGraw-Hill Publishing									

U19N	1CT202	2		BASI	C ELEC	CTRICA	AL ENG	GINEE	RING L T P C						С
Course	Outcor	nes										3	0	0	3
After su	After successful completion of this course, the students should be able to														
CO1·	<b>CO1:</b> Evaluate the behaviour of circuit elements in electric circuits														
CO2:	Explain the principles of operation of magnetics circuits and transformers														
CO3:	Outline the construction and working principles of DC machines and synchronous machines.														
CO4:	Evaluate the electromagnetic energy conversion and operating principle of three phase induction motors.														
CO5:	Explain the principles of operations of single-phase induction and stepper motors.														
Pre-req	uisite														
Engine	gineering Physics														
CO/PO, PSO Mapping															
(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak															
	Programme Outcomes (POs) and Programme Specific Outcome (PSOs)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSC	D1 ]	PSO2
CO1	3	3	3	2			2			2			Ś	3	2
CO2	3	3	3	2			2			2			Ś	3	2
CO3	3	3	3	2			2			2				3	2
CO4	3	3	3	2			2			2				3	2
CO5	3	3	3	2			2			2				3	2
		•			Cour	rse Ass	essmer	t meth	ods				•		
				Direc	t						In	direct			
Internal	l test I (	8)		С	Online to	est (6)									
Internal	ernal test II (8) Attendance (5) Course									Course	end si	urvev	7		
Internal	l test III	(8)			nd sem	nester E	lxamina	tion (6	0)				-		
UNIT I	FUNDA	AMEN	TAL LA	AWS O	F ELEC	CTRIC	AL ENG	GINEE	RING	AND		9 H	01175		

Electric Current - Coulomb's Law - Ohm's Law - Faraday's Law of Electromagnetic Induction -Kirchhoff's Laws-Energy and Power - Resistance Parameter - Inductance Parameter - Capacitance Parameter - Series and Parallel Combinations of Resistances ---RLC Series-Parallel Circuits - Resonance

#### UNIT II MAGNETIC CIRCUITS AND TRANSFORMERS

9 Hours

Ampere's Law – Basic Definition: Flux, Flux Density, Field Strength, Permeability, Reluctance, Permeance - Theory of Magnetism -Hysteresis and Eddy-Current Losses - Magnetic Circuit -Self Inductance, Mutual inductance, Co-efficient of Coupling- Transformers – Equivalent Circuit–Parameters from No-Load Tests - Efficiency and Voltage Regulation.

#### UNIT III DC MACHINES AND THREE PHASE SYNCHRONOUS MACHINES 9 Hours

DC Machines- DC Generator-construction-working principle- EMF equation-Types of DC Generator, DC motor-working principle -Types of DC Motor-Motor Speed torque Characteristics-starters for DC Motors -Generation of a Three Phase Voltage- Synchronous Generator-construction and working principle.

## UNIT IV ELECTROMAGNETIC ENERGY CONVERSION AND THREE PHASE

### 9 Hours

#### **INDUCTION MOTOR**

Introduction-Basic Analysis of Electromagnetic Torque - Three Phase Induction Motor - Revolving Magnetic Field - Construction- Working Principle- Types- Speed-Torque Characteristic - Parameters from No Load and Blocked rotor Tests – Equivalent Circuit – Applications of Three phase Induction Motors.

UNIT V SINGLE PHASE INDUCTION MOTORS AND SPECIAL MACHINES

9 Hours

Single Phase Induction Motor-Construction-working principle- Switched reluctance motor- Stepper Motors -working principle- Stepper Motors -PM Brushless DC motors - Servo motor- Applications

Theory: 45 Hrs	Tutorial:	Practical: Hr	Total Hours: 45 Hrs

### **Text Books**

- 1. B.L. Theraja and A. K. Theraja, "A Text Book of Electrical Technology", S.Chand Publication, Vol 2,2014.
- 2. A. Sudhakar and S.P Shyam Mohan, "Circuits, Network Analysis and Synthesis", Tata McGraw Hill, Fifth Edition, 2015.

## REFERENCES

- 1. D.P. Kothari and I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, Fourth Edition, 2011.
- 2. V.K.Metha, Rohit Metha, "Principles of Electrical Engineering and Electronics", Second edition, S.Chand Publication, 2015.
- S.K.Bhattacharya "Basic Electrical and Electronics Engineering" Pearson Education India, 2012. 3.
- 4. V.N. Mittle and Aravind Mittal "Basic Electrical Engineering", Tata McGraw Hill, Second edition, 2005.

#### **U19WPL212 – WORKSHOP PRACTICE**

# L T P C 0 0 2 1

#### Course Outcomes: At the end of the course, the students will be able to

- **CO1** familiarize with the basic of tools and equipment's used in fitting, carpentry, welding and sheet metal.
- CO2 fabricate the different simple products in above trades.
- CO3 produce different joining of metals.

#### **List of Experiments**

#### **SECTION 1: FITTING**

Tools and Equipment's- Practice in filling. Making of Vee joint and square (T-fitting) joint.

#### **SECTION 2:** SHEET METAL

Tools and Equipment's- Practice Making of Dust Pan and Funnel.

## SECTION 3: WELDING

Tools and Equipment's – Practice

Arc welding of Butt joint and Lap Joint.

#### **SECTION 4: CARPENTRY**

Tools and Equipment's- Planning Practice Making of Half Lap joint and Dovetail Joint.

**TOTAL: 30 Hours** 

1	U19M	CT203	BA	ASIC E	LECTF	RICAL LA	ENGIN Abora	NEERII TORY	NG AN	ID DEV	ICES	L 0	T 0	P 4	C 2
Cou	rse Ou	tcomes													<u> </u>
Afte	r succ	essful co	mpleti	on of th	nis cou	rse, the	e stude	nts sho	uld be	able to					
CO1	:	Underst of trans	and the	e usage and ele	of com ectrical	mon e machi	lectrica nes.	l meası	ıring ir	nstrume	nts and	basic o	haract	erist	ics
CO	2:	Evaluat	e the ch	aracter	istics of	f semic	onduct	or devi	ces.						
CO	3:	Interpre devices	t the so	lutions	for rea	l time	applica	tions o	felectr	ical mac	hines a	nd sen	icond	ıctoı	
Pre-	Pre-requisite														
	CO/PO, PSO Mapping														
	(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak														
COs	Programme Outcomes (POs) and Programme Specific Outcome (PSOs)														
03	РО	1 PO2	PO2         PO3         PO4         PO5         PO6         PO7         PO8         P09         PO10         PO 11         PO 12         PSO 1         PSO 2												
CO1	3	3	3	3 3 2 3 2										2	
CO2	. 3	3	3	3 2 3 2										2	
CO3	3	3	3	3						2			3		2
	Course Assessment methods														
	Direct Indirect														
CIE	TEST-	[ (20)				Ç	uiz-II (	5)				Co	urse		end
Quiz	z-1 (5) тест ⁻	( <b>2</b> 0)				K	TPS (IC	)) octor E	vomin	ation (1)	))	su	rvey		
List	of Evr	eriment	6			Ľ	nu sem	ester L	λαιιιιια	ation (40	)				
1	Measu	ring the	steady-	state a	nd tran	sient ti	me-res	nonse (	of R-L	R-C. and	d RLC (	rircuits			
2	Sinusc	nidal stea	dv state	e respo	nse of I	R-L an	d R-C c	rircuits	imped	ance			-		
3.	Calcul	ation a	nd veri	fication	n. Obse	ervatio	n of r	hase of	differe	nces be	tween	curren	t and	vol	tage.
	Reson	ance in I	R-L-C ci	rcuits.			r								
4.	Loadii power	ng of a	transfo	rmer: 1	neasur	ement	of pri	mary a	and se	condary	voltag	ges and	l curre	ents,	and
5.	Three-	phase tr	ansform	ners: Sta	ar and I	Delta c	onnecti	ions.							
6.	Torqu	e Speed	Charact	eristic	of dc sh	nunt m	otor.								
7.	Synch	ronous s	peed of	two an	d four-	-pole, t	hree-pł	nase ind	ductior	n motors	5.				
8.	8. Torque-Slip Characteristic of an induction motor.														
9.	9. Verify the VI Characteristics of PN diode														
10.	Verify	the VI C	Characte	eristics	of Zene	er diod	e								
11.	Verify	the VI C	Characte	eristics of	of SCR.										
12.	Verify	the VI C	Characte	eristics	of MOS	SFET.					Tota	al Hours	: 60 Ho	urs	

#### U19GE201 - BASIC APTITUDE - II

L	Т	Р	С
0	0	2	0

**Course Outcomes: At the end of the course, the students will be able to CO1** solve more elaborate problems than those in BA-I in specific areas of quantitative aptitude.

**CO2** solve problems of greater intricacy than those in BA-I in stated areas of logical reasoning.

**CO3** demonstrate higher than BA-I level verbal aptitude skills in English with regard to specific topics.

#### List of Experiments

#### 1. QUANTITATIVE APTITUDE AND LOGICAL REASONING

Solving quantitative aptitude and logical reasoning problems with reference to the following topics:

- a. Ratio and proportion
- b. Partnership
- c. Chain rule
- d. Ages
- e. Profit, loss and discount
- f. Geometry
- g. Area and volume
- h. Data arrangement

### 2. VERBAL APTITUDE

Demonstrating verbal aptitude skills in English with reference to the following topics:

- a. Jumbled sentences
- b. Reconstructions of sentences (PQRS)
- c. Sentence fillers two words
- d. Idioms and phrases
- e. Spotting errors
- f. Writing captions for given pictures

**TOTAL : 24 Hours** 

# Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester III Regulations 2019 Branch: Mechatronics Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact
							Hours
		Theory					
1	U19MC301	Fluid Mechanics and Machinery	3	0	0	3	45
2	U19MC302	Strength of Materials	3	0	0	3	45
3	U19MC303	Manufacturing Technology	3	0	0	3	45
4	U19MC304	Electrical Drives and Control	3	0	0	3	45
5	U19MC305	Digital Electronics	3	0	0	3	45
6	U19GE304	Mandatory course: Constitution of India	2	0	0	0	30
		Practical	·				
7	U19MC306	Fluid Mechanics and Strength of Materials Laboratory	0	0	4	2	60
8	U19MC307	Manufacturing Technology Laboratory	0	0	3	1.5	45
9	U19MC308	Electrical Drives and Control Laboratory	0	0	3	1.5	45
10	U19GE301	Soft Skill and Aptitude – I	0	0	2	1	30
				To	tal Credits	21	

## **Approved By**

## Chairperson, Mechatronics Engineering BoS Dr.P.Suresh

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

## Copy to:-

HOD/ Mechatronics Engineering, Third Semester BE MCT Students and Staff, COE

U19MC301

Course C	Dutcomes
After suc	ccessful completion of this course, the students should be able to
C01:	Apply mathematical knowledge to predict the properties of fluid and analyse the pressure measurement.
CO2:	Evaluate the fluid flow problems using continuity equation and Bernoulli's equation with their applications. Distinguish laminar and turbulent flow through circular pipes.
CO3:	Perform the dimensional analysis by using Buckingham's $\Pi$ theorem.
CO4:	Analyze the performances of the hydraulic turbines.
CO5:	Describe the working principle of centrifugal pumps & reciprocating pumps and analyze their performances.
Pre-requ	lisite
1.	Engineering Physics

2. Transforms & Partial differential equations

#### CO/PO, PSO Mapping

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

Programme Outcomes (POs) and Programme Specific Outcome (PSOs)													
l PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	
3	2	2	1	1				1			3	2	
3	2	2		2				1			3	2	
3	3	2	1	1				1			3	2	
3	3	2		2	1	1		1		1	3	2	
3	3	2		2	1	1		1		1	3	2	
1	1 PO2 3 3 3 3 3 3 3	Progra           1         PO2         PO3           3         2           3         2           3         3           3         3           3         3           3         3           3         3           3         3	Programme (         1       PO2       PO3       PO4         3       2       2         3       2       2         3       2       2         3       3       2         3       3       2         3       3       2         3       3       2	Programme Outcor         1       PO2       PO3       PO4       PO5         3       2       2       1         3       2       2       1         3       3       2       1         3       3       2       1         3       3       2       1         3       3       2       1         3       3       2       1         3       3       2       1	Programme Outcomes (P         1       PO2       PO3       PO4       PO5       PO6         3       2       2       1       1         3       2       2       2       2         3       3       2       1       1         3       3       2       1       1         3       3       2       2       2         3       3       2       2       2         3       3       2       2       2	PO2       PO3       PO4       PO5       PO6       PO7         3       2       2       1       1         3       2       2       1       1         3       2       2       1       1         3       3       2       1       1         3       3       2       1       1         3       3       2       2       1         3       3       2       2       1         3       3       2       2       1	Programme Outcomes (POS) and Program (POS) and Programme Outcomes (POS) and Program (POS	1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9         3       2       2       1       1 <t< td=""><td>PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10         3       2       2       1       1        1       1         3       2       2       1       1        1       1         3       3       2       2       2       1       1       1       1         3       3       2       1       1       1       1       1       1         3       3       2       2       2       1       1       1       1       1         3       3       2       2       2       1       1       1       1       1       1         3       3       2       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11         3       2       2       1       1        1       1         3       2       2       1       1        1       1         3       3       2       1       1        1       1         3       3       2       1       1        1       1         3       3       2       2       1       1       1       1         3       3       2       2       1       1       1       1         3       3       2       2       1       1       1       1         3       3       2       2       1       1       1       1</td><td>1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12         3       2       2       1       1         1         PO10       PO11       PO12         3       2       2       1       1         1</td><td>1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01         3       2       2       1       1       -       -       1       -       3         3       2       2       1       1       -       -       1       -       3         3       3       2       1       1       -       -       1       -       3         3       3       2       1       1       -       -       1       -       3         3       3       2       1       1       -       -       1       -       3         3       3       2       1       1       1       1       3       3         3       3       2       2       1       1       1       1       3         3       3       2       2       1       1       1       1       3         3       3       2       2       1       1       1       1       3</td></t<>	PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10         3       2       2       1       1        1       1         3       2       2       1       1        1       1         3       3       2       2       2       1       1       1       1         3       3       2       1       1       1       1       1       1         3       3       2       2       2       1       1       1       1       1         3       3       2       2       2       1       1       1       1       1       1         3       3       2       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11         3       2       2       1       1        1       1         3       2       2       1       1        1       1         3       3       2       1       1        1       1         3       3       2       1       1        1       1         3       3       2       2       1       1       1       1         3       3       2       2       1       1       1       1         3       3       2       2       1       1       1       1         3       3       2       2       1       1       1       1	1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12         3       2       2       1       1         1         PO10       PO11       PO12         3       2       2       1       1         1	1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01         3       2       2       1       1       -       -       1       -       3         3       2       2       1       1       -       -       1       -       3         3       3       2       1       1       -       -       1       -       3         3       3       2       1       1       -       -       1       -       3         3       3       2       1       1       -       -       1       -       3         3       3       2       1       1       1       1       3       3         3       3       2       2       1       1       1       1       3         3       3       2       2       1       1       1       1       3         3       3       2       2       1       1       1       1       3	

#### **Course Assessment methods**

	Direct	Indirect
Internal test I (8)	Assignment/Seminar (5)	Course end survey
Internal test II (8)	Attendance (5)	
Internal test III (8)	End semester Examination (60)	
Moodle (6)		

#### **Unit 01: FLUID PROPERTIES AND PRESSURE MEASUREMENT**

09 Hours

Units & Dimensions. Properties of fluids – mass density, specific weight, specific volume, viscosity, capillarity and surface tension, compressibility, vapor pressure and cavitation. Pressure Measurement- Pascal law-measurement of pressure through simple and differential manometers

# Unit 02: FLOW CHARACTERISTICS AND FLOW THROUGH PIPES 09 Hours

Types of fluid flow- application of continuity equation, Euler's equation-Bernoulli's equation-Orifice meter, Venturi meter.

Boundary layer concept-Laminar flow though circular pipes -Hagen-Poiseuille equation- Turbulent flow though circular pipes- Darcy Weisbach equation –friction factor-Energy losses in flow through pipes (description only)-Power transmission through pipes.

#### Unit 03: DIMENSIONAL ANALYSIS

09 Hours

Need for dimensional analysis – methods of dimensional analysis – Buckingham's ∏ theorem, Dimensionless parameters- application of dimensionless parameters. Models and Similitude.

Unit 04: HYDRAULIC T	URBINES		09 Hours						
Turbines: definition and Kaplan turbine - working calculations-specific spee	classification – impulse and reaction- Pe principles - velocity triangles - work don d.	elton turbine - F e - efficiencies a	Francis turbine - and performance						
Unit 05: HYDRAULIC P	UMPS		09 Hours						
Pumps: Definition and cl and efficiencies, perform performance calculations principle.	assifications. Centrifugal pump- working ance calculations. Reciprocating pump – s, function of air vessel-Rotary pumps-	principle, velocit classification, w gear and vane	ty triangle, head orking principle- pump- working						
Theory: 45Hrs	Tutorial: -	Total Hou	urs: 45 Hrs						
<b>Text Books</b> 1. Bansal, R.K., Fluid Mechanics and Hydraulics Machines, (9th edition), Laxmi publications (P)									
Ltd, New Delhi, 2015									
1. Sukumar Pati., "Fluid Ltd, New Delhi, 2012.	Mechanics and Hydraulics Machines", Tat	a McGraw Hill pı	ublications (P)						
2. C.S.P.Ojha, R.Berndtsson, P.N.Chandramouli., Fluid Mechanics and Machinery, Oxford University Press, New Delhi, 2010.									
3. Modi P.N. and Seth, S 2004	S.M. "Hydraulics and Fluid Mechanics", Sta	ndard Book Hou	ıse, New Delhi						
4. Streeter, V. L. and W	ylie E. B., "Fluid Mechanics", McGraw Hill	Publishing Co. 2	010						
5. Ramamritham. S, Flu 2011	id Mechanics, Hydraulics and Fluid Machin	es, Dhanpat Rai	& Sons, Delhi,						

U19MC302

L	т	Ρ	С
3	0	0	3

Course C	Course Outcomes								
After suc	After successful completion of this course, the students should be able to								
CO1:	Analyse the state of stresses and strains in engineering components as a result of different loading conditions in the machine members and structures.								
CO2:	Investigate the effect of various loading combinations by determining the principal stresses, principal planes and maximum shear stress u on machine and structural parts using Mohr's circle.								
CO3:	Apply the principles and equations, necessary tools to analyze structural members under axial loads, bending, shear, and torsion.								
CO4:	Evaluate the material behaviour under pure torsion on circular shafts.								
CO5:	Design the structural beams, columns, long mechanical members under compression and different loading condition.								

## **Pre-requisite**

1. Engineering Mechanics

## CO/PO, PSO Mapping

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

COs	Programme Outcomes (POs) and Programme Specific Outcome (PSOs)													
005	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	2				1			3	2
CO2	3	3	3	2	1	2				1			3	2
CO3	3	3	3	2	1	2	1	1		1		1	3	2
CO4	3	3	3	2	1	2	1			1			3	2
CO5	3	3	3	2	1	2	1	1		1		1	3	2

Course Assessment methods								
C	Indirect							
Internal test I (8)	Assignment/Seminar (5)	Course end survey						
Internal test II (8)	Attendance (5)							
Internal test III (8)	End semester Examination (60)							
Moodle (6)								

Unit 01: Stress, Strain and Deformation of Solids	09 Hours
Simple stress and strain – Stresses and strains due to axial force - Med materials – Stress-strain curve –- Hooke's law - Factor of safety – Steppe varying sections – Stresses in composite sections - Temperature stresses shear modulus, bulk modulus, relationship between elastic constants.	chanical properties of ed shafts – Uniformly es – Poisson's ratio -
Unit 02: Analysis of Stresses in Two Dimensions	09 Hours
State of stresses at a point – Normal and tangential stresses on inclin planes and stresses – Plane of maximum shear stress - Mohr's circle for b	ed planes - Principal iaxial stresses –Hoop
and longitudinal stresses in thin cylinders and shells – under internal press	sure – deformation of

Unit 03: Beams - Loads and Stresses	09 Hours
Beams – types of supports – simple and fixed	d, types of load – concentrated, uniformly

thin cylinders and shells.

distributed, varying distributed load, combination of above loading – relationship between bending moment and shear force – bending moment, shear force diagram for simply supported, cantilever and over hanging beams – Point of contra flexure. Introduction to Theory of simple bending.

Unit 04: Torsion in Shafts and springs	09 Hours						
Analysis of torsion of circular bars – Shear stress distribution – Bars of Solid and hollow circular							
section - Stepped shaft - Twist and torsion stiffness - Compound	shafts Springs:						
Classification - Leaf springs, closed coil helical springs - Application of various springs							
Maximum shear stress in spring – Deflection of helical coil springs under axial loads.							
Unit 05: columns and Deflection of Beams	09 Hours						

Columns: Buckling of long columns due to axial load - Equivalent length of a column – Euler's and Rankine's formulae for columns of different end conditions – Slenderness ratio Deflection of beams – double integration method – Macaulay's method – slope and deflection using moment area method.

Theory:	45	Hrs

Tutorial: -

Total Hours: 45 Hrs

## Text Books

- 1. R K Bansal, "A text book of Strength of Materials", Lakshmi Publications (P) Limited, New Delhi, 2007.
- 2. R K Rajput, "Strength of Materials", S Chand & Co., New Delhi, 2006.

## REFERENCES

- 1. Nash W.A, "Theory and problems in Strength of Materials", Schaum Outline Series, McGraw-Hill Book Co, New York, 1995.
- 2. Singh D.K "Mechanics of Solids" Pearson Education 2002.

3. Ryder G.H, "Strength of Materials", Macmillan India Ltd., Third Edition, 2002.

4. Popov E.P, "Engineering Mechanics of Solids", Prentice-Hall of India, New Delhi, 1997.

U19MC303

Course C	Course Outcomes								
After suc	After successful completion of this course, the students should be able to								
C01:	Elaborate the sand casting, pattern materials and welding, different welding processes.								
CO2:	Describe the various bulk deformation processes, different sheet metal operations and shaping of plastics using different moulding methods.								
CO3:	Identify the cutting tool materials and its specific purpose and explain about lathe details, main dissimilarity of capstan and turret lathes.								
CO4:	Illustrate the principle of reciprocating machine tools.								
CO5:	Explain the working principle of milling and grinding processes.								
Pre-requ	iisite								
1	Engineering Develop								

1. Engineering Physics

#### CO/PO, PSO Mapping

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

CO		Programme Outcomes (POs) and Programme Specific Outcome (PSOs)												
S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	1	1	2	1	1		1		1	3	2
CO2	3	3	3	1	1	2	1	1		1		1	3	2
CO3	3	3	3	2	1	2	1	1		1		1	3	2
CO4	3	3	3	2	1	2	1	1		1		1	3	2
CO5	3	3	3	2	1	2	1	1		1		1	3	2

Course Assessment methods										
	Direct	Indirect								
Internal test I (8) Internal test II (8) Internal test III (8)	Assignment/Seminar (5) Attendance (5) End semester Examination (60)	Course end survey								
Moodle (6)										

## Unit 01: METAL CASTING AND METAL JOINING PROCESS 09 Hours

Sand Casting- Moulding Tools- Types of Patterns- Pattern Materials- Moulding Sand-Properties- Melting Furnaces: Cupola, Crucible and Electric arc furnace- Special Casting Process: Shell, Investment Casting - Lost Wax Process- Gas welding- Arc welding -TIG welding- MIG welding.

#### Unit 02: SHEET METAL AND PLASTIC COMPONENTS

**09 Hours** 

Drawing Process: Wire drawing, Tube drawing, Metal Spinning, Rolling: Type of rolling mills-Extrusion: Principles of Extrusion – Types – Hot and Cold extrusion, Sheet metal: Rubber pad forming- Explosive forming. Moulding of thermoplastics- injection moulding- blow moulding – Rotational moulding

#### **Unit 03: CENTRE LATHE**

**09 Hours** 

Centre lathe: constructional features- various operations, tool and work holding devices- taper turning methods, thread cutting, special attachments. Special Purpose Lathe: Capstan and

turret lathes – automats Bar feed mechanism	- single spindle- Swiss type- a	utomatic screw t	ype, multi spindle,
Unit 04: SPECIAL MACH	IINE TOOLS		09 Hours
Construction, Types, Op making: drilling – Rear construction – push, pull,	erations and mechanisms of s ning, Boring- Tapping operati surface and continuous broachin	Shaper, Planner ons. Broaching g machines.	and Slotter. Hole machines: broach
Unit 05: MILLING AND	GEAR PROCESS		09 Hours
Milling operations-types o construction of gear mi Grinding: types of grindin surface grinding, centreles	f milling cutter. Gear cutting – f lling, hobbing and gear shapi g process- types of grinding whe ss grinding – honing, lapping and	orming and gene ng processes -1 eel – Abrasives - d buffing.	ration principle and finishing of gears. cylindrical grinding,
Theory: 45Hrs	Tutorial: -	Total Ho	ours: 45 Hrs
<b>Text Books</b> 1. Hajra Choudhury, Y	Elements of Workshop Technolo	gy, Vol. I and II",	, Media promoters
2. Mikell P Groover, "	Principles of Modern Manufactur	ing" Wiley India F	Pvt Ltd. 2014.
REFERENCES			
1. B.S. Magendran pa Prentice Hall of Inc	irashar & R.K. Mittal, "Elements o lia, 2003.	of Manufacturing	Processes",
2. P.N. Rao, Manufact 2002.	uring Technology", Tata McGraw	-Hill Publishing L	imited, II Edition,
3. J.P .Kaushish "Man 2010.	ufacturing Processes" PHI Learn	ing Private limited	l, second edition
4. P. C. Sharma, "A to Edition, 2003.	ext book of production technolog	y", S. Chand and	company, IV
5. Begma, 'Manufactu	Iring process", John Wilely & son	s, VII Edition, 20	05.
6. Serope Kalpajian, S Pearson Education,	Steven R.Schmid, Manufacturing , Inc. 2002 (Second Indian Repri	Engineering and nt)	Technology,
7. Beddoes. J and Bib	by M.J. 'Principles of Metal Manu	facturing Process	es', Elsevier, 2006.
8. Rajput R.K, 'A text	book of Manufacturing Technolo	gy', Lakshmi Pub	lications, 2007.

U191	U19MC304 ELEC				DRI	VES A	ND C	ONTR	OL	L	т	-	Ρ	С
0151	1000									3	0	)	0	3
Cours	e Out	come	s											
After successful completion of this course, the students should be able to														
CO1:	To lea with r	arn th espec	e Gene ct to th	eral ch ne app	aracte licatio	eristics ns.	s of dif	ferent	type	es of ele	ectric	al AC	& DC	Motors
CO2:	Expla	in the	natur	e of sp	peed to	orque	chara	cteristi	ic of	various	type	es of l	loads a	nd
	drive motor													
<b>CO3:</b> Describe the different starting methods of AC & DC motors.														
CO4:	<b>CO4:</b> Explain various solid-state speed controls of single and three phase DC drives.													
CO5:	Expla	in the	worki	ng of	variou	s 3 ph	ase in	ductio	n mo	otor driv	/es fo	or pre	ecise va	ariable
Dro-re	speed		roi.											
1	Basic	Flact	rical F	nainea	rina									
1.	Dasic	LIECU		Iginee		/PO	PSO N	lannii	na					
(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak														
		Prog	ramme	e Outc	omes	(POs)	and P	rogran	nme	Specific	c Out	, come	e (PSO	5)
COs		-						-		PO	PO	PO		
	PO1	PO2	PO3	P04	P05	P06	PO7	PO8	P09	10	11	12	PS01	PS02
CO1	3	3	3	2	1	1	2	1	1	2			3	2
CO2	3	3	3	2	1	1	2	1	1	2			3	2
CO3	3	3	3	2	1	1	2	1	1	2			3	2
CO4	3	3	3	2	1	1	2	1	1	2			3	2
CO5     3     3     2     1     1     2     1     1     2											2			
Course Assessment methods														
Direct Indirect														
Intern	al test	I (8)		Assig	nment	/Semi	nar (5	)		C	ourse	e end	survey	/
Intern	al test	II (8)	)	Atten	dance	(5)								
Intern	al test	III (8	3)	End s	emest	er Exa	aminat	ion						
Moodle	e (6)			(60)										
Unit	01:	INT	RODU	отто	N OF	ELEC	TRIC	DRIVI	ES				9	Hours
Basic	Eleme	ents -	· Type	s of El	ectric	Drives	s – fao	tors in	nflue	encing t	he cł	noice	of	
electi	rical d	rives	– hea	ating	and c	ooling	curve	es – L	_oad	ing con	ditio	ns ai	nd	
class	es of d	duty -	- Sele	ction c	of pow	er rat	ing fo	r drive	e mo	tors wit	h re	gard	to	
thern	nal ov	erload	ding a	and Lo	bad va	ariatio	n fact	ors. [	Drive	e consid	derat	ion f	or	
lexti		s, Ste	el rolli	ng mil	ls, Cer	nent r	nilis, i	aper r	mills					-
			tor sta	ana s	– Bral	contr	f Floct	rical n	• noto	rs _Indi	uctio	n Mo	tor	
starte	ers- Sc	beed of	control	of D	C serie	s and	shuni	moto	rs –	Armati	ure a	nd fi	eld	
contr	ol, Wa	ard- I	eonar	d con	trol s	system	appl	icatior	ns. C	Convent	ional	Spe	ed 9	Hours
Contr	ol of	Indu	ction	Motor	s: Sta	ator \	/oltag	e Con	trol,	Stator	- Fre	equer	ісу	
Contr	ol, Ro	tor Re	sistan	ce Cor	<u>ntrol.</u>									
Unit	03:			IONA	L ANC	) SOL	ID-ST	ATE S	<b>PEE</b>	D CON	TRO	L OF		
		DCI	JKIVE	5									9	Hours
Sinale	Phase	and	Three	e Pha	se Ful	lv Cor	ntrolle	d Con	vert	er Prin	cinle	of	peratio	on and
wavef	orms (	of sin	ale ph	ase a	nd thr	ree ph	ase fi		ontro	lled cor	vert	er fe	d DC	drive -
Chopp	ers Fe	<u>d D</u> C	<u>Mot</u> or	Drive	<u>– App</u>	<u>licat</u> io	ns.	,						-
Unit	04:	CON		IONA		SOL	ID-ST	ATE S	PEE	D CON	TRO	L OF	9	Hours
Sneed	conti	rol of	three	nha	se ind	duction	n mot	or-Vo	Itane	contre		/oltan	le/ fre	allency
Specu	COLL	5. 01			<u> </u>				. cuye		<i>.,</i> v	uruy	, ii C	yachey

control, Slip power recovery scheme- VSI fed Three Phase Induction Motors-CSI Fed										
Thee Phase Induction										
Unit 05: SPEC	IAL MOTOR DR	IVES	9 Hours							
Speed control of St	epper motors –	Permanent magnet, Vari	able reluctance, Single and							
multi-stack configur	ations, Hybrid m	notor. Speed control of S	witched reluctance motor -							
AC & DC Servo motors – Brushless DC motors										
Theory: 45 Hrs	Tutorial:	Practical: Hr	Total Hours: 45 Hrs							
Text Books										
1. <u>U.A.Bakshi</u> , <u>N</u>	<u>1.V.Bakshi</u> , "Eleo	ctrical Drives and Control'	', Technical Publications,							
2009.										
2. G.K dubey , `	'Fundamentals o	of Electrical Drives ",Naros	a Publishing House, New							
Delhi ,2 nd E	dition, 2001									
REFERENCES										
1. M. D. Singh,	"Power electroni	cs", Tata McGraw-Hill Edu	ucation, 2011.							
2. Bimbhra, P.S	., "Power Electro	onics", Second edition, Kh	anna Publishers, New Delhi							
5 th Edition,	2015.									
3. <u>P.C.Sen</u> "Pri	nciples of Electi	ric Machines and Power	Electronics" John Wiley &							
Sons, 2007.										
4. VEDAM SUBR	AMANIAM "Elect	tric drives", Tata McGraw-	-Hill.2001.							

U	191	4C305	5			6	DIGIT	AL ELE	CTRO	NICS	S	ICS L T P					0
Cour	se 0	utcom	es												U		
Afte	r suc	cessfu	l com	pletio	n of th	nis co	urse, t	the stu	dents	sho	bulo	d be abl	e to				
C01	•	Discuss functio	the ns usi	differe ng logi	ent nu c gates	mber S	syste	ms, er	ror co	rrect	ting	g codes	and im	npleme	nt l	Boolea	an
CO2	:	Design	and a	nalyse	the co	mbina	itional	logic ci	rcuits								
CO3	:	Design	and a	analyse	synch	ronous	s seque	ential ci	rcuits	usin	g fli	ip flops					
C04	:	Design	and i	mpleme	ent var	ious lo	ogic fu	nctions	using	RO₽	1, P	LA and P	PAL				
C05	•	Discuss	the c	differen	t types	s of ba	sic ele	ctronics	s circui	ts.							
Pre-	requ	isite															
P	hysic	s for Ele	ectror	1 device	S												
			(2/2/	1 :	+	C	0/PO,	PSO M		ng		Madium	1 \\/~~	L			
			(3/2/) Dro			rength		and Pr	1) 3-St	rong mo 9	], <u>Z</u> Sno	-Mealum	, I-wea	K SOc)			
COs							<b>PO</b>			P	0 0		<b>PO</b>	503)			_
-	PO	L PO2	PO3	P04	P05	P06	7	PO 8	P0 9	1	0	PO 11	12	PSO	1	PSO	2
C01	3	3	3	2	2				2					3		2	
CO2	3	3	3	2	2				2					3		2	
CO3	3	2	3	2	2				2					3		2	
C04	3	3	3	2	2				2					3		2	
C05	3	3	3	2	2				2					3		2	
						Cours		ocemo	nt mo	thor	de						
Course Assessment methods Direct Indirect																	
Inter	nal te	est I (8`	)	Ass	ianme	nt/Ser	ninar (	(5)			Со	urse end	survev			_	
Inter	nal te	est II (8	3)	Atte	endanc	e (5)	- (						,				
Inter	nal te	est III (	8)	End	seme	ster E	xamina	ation (6	0)								
11000	ne (o	)															
Unit	01:	BINAR	Y SYS	STEMS	AND	BOOL	EAN A	LGEBR	A					09 H	ours	5	
Num	ber s	ystems	– Bas	se conv	ersion	– Bina	ary coo	des – Pa	arity a	nd h	ami	ming coo	le – Log	ic gate	s – I	Boole	an
laws	and	theore	ms –	Minim	izatior	n of B	oolear	expre	ssions	- :	SOF	P and P	OS form	ns, mi	nteri	ms a	nd
maxt	erms	<u>s – Karn</u>	augh	map m	inimiz	ation (	up to	5 varia	bles) -	Rea	aliza	ation of c	circuits u	ising lo	gic (	<u>gates</u> -	
Desic		Half an	d Ful	<b>ONAL</b>	Half	and Fi	ill Sub	tractor	Parall	م ام	dda	r / Suht	ractor (	<b>09 п</b> `omnai	our:	s r Par	itv
gene	rator	and ch	ecker	- Prior	ity En	coder,	Decoc	der, Dei	multip	exer	r an	nd Multip	lexer – I	Implen	nent	ation	of
comb	oinati	onal log	jic cir	cuits us	ing de	coder,	de-m	ultiplex	er and	mul	ltipl	exer.					
Unit	03:	DESIG	N OF	SYNCH	IRON	DUS S	EQUE	NTIAL	CIRC	JITS	5	<u>.</u>		09 H	ours	5	
Flip f	lops	– SR, JI and Des	<, D a ian of	and I -	Maste	er-Slav	e flip-1 ential (	flop – R circuits		tion	01 0 000	one flip f	lop using	g othei	flip – חי	flops	; –
syncl	hrond	ous cour	nters	– Shift	registe	ers.		circuits	Азуі	ICHIN	0110	us op /	Down co	Junter		Sign	01
Unit	<b>04</b> :	МЕМО	RIES	AND P	LDs									09 H	ours	5	
Class	sificat	ion of	memo	ories –	Rando	om Aco	cess M	lemory	(RAM)	) — F	Rea	d Only I	Memory	(ROM)	) – I	Memo	ory
deco	ding-	- Progra	mma	ble Arra	ay Log	ic (PA	L) - P	rogram	mable		ісА мп	Array (PL	.A) – Fi	eld Pro	grar	nmat	ble
Unit	05:	DIGIT	<u>A)</u> AL CI	RCUIT		ICATI	OUL IU	Inctions		KUI	<u>*1, r</u>		PAL.	09 H	ours	5	
Digit	al to	analoo	and	Analo	g to (	digital	conve	ertors ·	- R-2	R La	adde	er and	Successi	ve ap	prox	imati	on
techr	nique	s – Muľ	tivibr	ators –	Logic	gates	in tim	ing circ	cuits –	Оре	erat	ional am	nplifier –	Schm	itt tı	rigger	
555 t	timer	– Intro	ducti	on to A	rduino	and R	aspbe	rry Pi b	oards.								
-	Theo	rv: 15	Hour	e			Tutori	ial· -			1	Tata		. /F L	10	re	
	neu	· y · 45	iour	<b>.</b>			aton	an -				1010	ai nours	, <del>ק</del> ור ו	JUU	<u> </u>	
L																	
30.07	202	1												Regula	tions	s-2019	9

#### **TEXT BOOKS**

M. Morris Mano and Michael D. Ciletti, "Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog", Pearson Education, 6th edition, 2018.

D.P. Kothari and J.S. Dhillon, "Digital Circuits and Design", Pearson Education, 2015.

## REFERENCES

A. Anand Kumar, "Fundamentals of Digital Circuits", PHI India, 4th edition, 2016.

Charles H.Roth and Larry L. Kinney "Fundamentals of Logic Design", 7th Edition, Cengage Learning, 2014.

Donald D. Givone, "Digital Principles and Design", McGraw Hill Education, 2016

U19	мс	306		FLUI	D MEC	HANIC		D STRE		I OF	OF L T P					
												0	0	4	2	
Cour	se C	)utcon	ies													
After	' suo			letion	of this	cours	se, the	e stude	ents s	hould	be ab	le to				
CO	1:	Under	stand th	e worki dischar	ng prin	rifice/v	of flow	meters	uring II	nstrum	ents,	dete fluid	rmı mə	ne the		
		perfor	mance.	lischar		ince/ v	entun	meters	s and e	valuati	ether	luiu	ma	crimes		
CO	2:	Invest	igate th	e mech	anical p	propert	ies of	materia	als.							
CO	3:	Evalua	te the r	eal time	e proble	ems in	the flu	id flow	and n	nateria	l strer	gth	ana	lysis.		
Pre-r	equ	isite										-		-		
	En	gineeri	ng Phys	ics												
CO/PO, PSO Mapping																
		(3/	2/1 indi	cates s	trength	of cor	relatio	n) 3-St	rong,	2-Medi	um, 1	-Wea	ak			
COs			Program	me Ou	tcomes	(POs)	and P	rogram	me Sp	ecific C	Dutcor	ne (F	PSO	s)		
601	PO	1 PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO	12	PSO1	PSO2	
C01	3	3	3	2	2			1	3	2	1		-	3	2	
CO2	3	3	3	2	2				3	2	L		-	3	2	
03	3	3	3	2					3 thoda	2				3	Z	
Course Assessment methods Direct Todirect																
CIE TEST-I (20) RTPS (10) Course and																
Quiz-	I (5)	)				End	semes	ster Exa	aminat	ion (40	))	su	rvey	/	chu	
CIE T	EST	-II (20	)													
Quiz-	II (5	) (norim	onto													
Dart-	.A • F	inid M	lechani	ce laho	ratory	,										
1	De	termir	ation of	the Co	efficien	t of div	scharo	e of aiv	/en Ori	fice me	oter /	Vent	uri	meter		
2	Co	nducti	na expe	riments	and di	awing	the ch	aracte	ristic c	urves (	of cent	rifuc	ial r		/	
	su	bmersi	ble pum	p									у <b></b> - г	, ab		
3.	Сс	nducti	ng expe	riments	and di	rawing	the ch	aracte	ristic c	urves o	of reci	proca	atin	g pum	р/	
	Ge	ear pur	np.													
4.	Co	nducti	ng expe	riments	and di	rawing	the ch	aracte	ristic c	urves o	of Pelt	on w	hee	el.		
5.	Co	nducti	ng expe	riments	and di	rawing	the ch	aracte	ristics	curves	of Fra	ncis	tur	bine.		
6.	Co	nducti	ng expe	riments	and di	rawing	the ch	aracte	ristic c	urves o	of Kap	lan t	urbi	ine.		
Part-	•B: S	Streng	th of M	aterial	s laboi	ratory										
1.	Te	nsion ⁻	Test on	MS Stee	el.											
2.	2. Compression test – MS Steel.															
3.	3. Double shear test in UTM.															
4.		sts on	spring -			Lompr	ession	•								
5.				arpy an		1185.										
0.	111	ιρατί ι	530 - UI	arpy di		•				Tot	al Ho	ILLE	60	Hre		
										100			00			

U19MC307 MANUFACTURING TECHNOLOGY LABORATOR								ORY	L	т	Ρ	С			
		0007				1110		10100			UNI	0	0	3	1.5
Cour	se C	utcome	s										1		
After	r sud	cessful	comp	oletior	n of thi	is cou	urse, t	he stu	udents	s shou	ıld be	able	to		
CO	1:	Demons	trate	the wo	orking o	of gen	eral pu	irpose	machi	ne too	ls and	do ti	Jrni	ng	
		process	for a	given j	job										
CO	2:	Work on	drillir	ng mao	chine a	nd ma	ake dri	lling o	n steel	plate					
CO	3:	Perform	an A	RC we	Iding e	quipm	nent ar	nd mak	ke vari	ous jo	ints				
Pre-I	requ	isite													
	1.	Worksho	p pra	ctice la	aborato	ry									
		(2/2/1			CO	/PO,	PSO I	Mappi	ng	2					
	1	(3/2/1		tes str				n) 3-S	$\frac{\text{trong}}{\text{mo Sn}}$		utcomo				
COs		r	logiai			6 (FOS)		logram		PO	PO	PO	,з)   Р	SO	PSO
	PO	1 PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	10	11	12	1.	1	2
CO1	3	3	3	3						2			_	3	2
CO2	3	3	3	3						2				3	2
CO3	3	3	3	3						2				3	2
					Course	e Ass	essme	ent me	ethods	5					
					Di	irect							Ir	ndir	ect
CIE T	EST	-I (20)				R	TPS (1	0)	Evami	nation	(40)		Cou	rse	end
CIE T	EST	, -II (20)					iu sen	lester	Exam	nation	(40)		surv	/ey	
Quiz-	-II (5	5)													
List o	of Ex	operime	nts												
1.	. Ex	ercise or	ı simp	le faci	ng & Tı	urning	].								
2.	. Ex	ercise or	Step	turnin	ıg.										
3.	. Ex	ercise or	i tape	r turni	ng.										
4.	. Ex	ercise or	threa	ad cutt	ing ope	eratio	n.								
5.	. Ex	ercise or	ı Knur	ling ar	nd Groo	oving.									
6.	. Ex	ercise or	n Drilli	ng, Bo	ring an	nd Cha	amferir	ng.							
7.	. Ex	ercise or	ı radia	al drilli	ng (Dri	lling, [·]	Tappin	ig, Rea	ming	and Co	ounter	Sink)	).		
8.	. Ex	ercise or	ı surfa	ice ma	chining	j usin	g shap	er.							
9.	. Ex	ercise or	i Gear	millin	g.										
10	0.Ex	ercise or	ı cylin	drical	grindin	g.									
										Total	Hours	: 45	Hrs		

U19MC308

## ELECTRICAL DRIVES AND CONTROL LABORATORY

L	т	Ρ	С
0	0	3	1.5

Cour	se C	)utcon	ies									<b>I</b>												
After	suc	ccessfi	ıl com	oletior	ו of th	is cou	ırse, t	he stu	udents	s shou	ıld be	able	e to											
CO	L:	Unders Contro	stand th Iling of	ne cono DC an	cept of d AC n	starte notors	ers and	l starti	ng of r	notor	and ex	perii	nen	t the	9									
CO	2:	Test th Discus	e moto s the S	ors and peed a	gener nd tor	ators a que co	and dr ntrol o	aw the of DC r	e speed notors	d torqu and A	ie perf C mot	orma ors.	ance	cur	ves.									
COS	<b>CO3:</b> Give the solution for real time problems in electrical machines.																							
Pre-r	Pre-requisite																							
	1.Basic Electrical Engineering Laboratory																							
	CO/PO, PSO Mapping																							
		(3/2/	1 indica	tes str	ength	of cori	relatio	n) 3-S	trong,	2-Med	lium, 1	l-We	ak											
<b>60</b> -	Programme Outcomes (POs) and Programme Specific Outcome (PSOs)																							
COs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO 10	PO 11	PO	P	SO 1	PSO									
CO1	3	3	3	3						2		12		1 3	2									
CO2	3	3	3	3						2	-			3	2									
CO3	3	3	3	3						2				3	2									
Course Assessment methods																								
Direct Indirect																								
CIE T	EST	-I (20)				R	FPS (1	0)					Cou	rse	end									
Quiz-	I (5)	)				Er	nd sem	nester	Exami	nation	(40)		sur	/ey										
CIE T	EST [.]	-II (20)																						
	of F	vnerim	onts																					
1	Sn		ntrol of	DC sh	unt m	otor (A	rmatu	re Fie	ld con	trol)														
2.	St	udy of	V/f cont	trol op	eratior	$\frac{1}{1}$ of inc	ductior	n moto	r drive	2.														
3.	Sp	eed co	ntrol of	three	phase	slip rir	ng Ind	uction	Motor															
	~	and con	trol of ch	nopper-	control	lled DC	series	motor.																
4.	Sp	eeu con																						
4. 5.	Sp Sp	eed con	trol of C	hopper	contro	lled DC	shunt	motor.							6 Speed control of PWM inverter-based induction motor drive									
4. 5. 6.	Sp Sp Sp	eed con eed con	trol of Cl ntrol of	hopper PWM i	contro nverte	lled DC er-base	shunt i ed indu	motor. Iction I	motor	drive.														
4. 5. 6. 7.	Sp Sp Sp PL	eed con eed con eed co C based	trol of Cl ntrol of Speed co	hopper PWM i ontrol c	contro nverte of induc	lled DC er-base	shunt i ed indu otor.	motor. uction (	motor	drive.														
4. 5. 6. 7. 8.	Sp Sp Sp PL Sp	eed con eed co eed co C based eed con	trol of Cl ntrol of Speed co trol stee	hopper PWM i ontrol c per mo	control nverte of induc tor.	lled DC er-base ction mo	shunt i ed indu otor.	motor. uction	motor	drive.														
4. 5. 6. 7. 8. 9.	Sp Sp Sp PL Sp DS	eed con eed con C based eed con P contro	trol of Cl ntrol of Speed co trol stee	hopper PWM i ontrol c per mo ed spee	contro nverte of induc tor. ed contr	lled DC er-base tion mo	shunt i ed indu otor. duction	motor. Jction	motor r drive.	drive.														
4. 5. 6. 7. 8. 9.	Sp Sp PL Sp DS DS	eed con peed co C based eed con P contro peed co	trol of Cl ntrol of Cl Speed co trol stee oller-bas	hopper <u>PWM i</u> ontrol c per mo ed spee contro	control nverte of induc tor. ed contro olled re	lled DC er-base ttion me rol of in	shunt i ed indu otor. duction -basec	motor. uction i n motoi I DC m	motor r drive. iotor d	drive.														
4. 5. 6. 7. 8. 9. 10 11	Sp Sp PL Sp DS DS . Sp	eed con beed co C based eed con P contro beed co beed co	trol of Cl ntrol of Cl Speed co trol stee oller-bas ntrol of ntrol of	hopper PWM i ontrol c per mo ed spee contro Brush	control nverte of induc tor. ed controlled re less Do	lled DC er-base tion mo rol of in ectifier c Moto	shunt i ed indu otor. duction -basec r.	motor. uction i n motoi I DC m	motor r drive. iotor d	drive. rive.														

Semester-III	U19 GE301- SOFT SKILLS AND APTITUDE -I L T P C Marks 0 0 2 1 100
Course Outcomes At the end of the cou	arse the student will be able to:
1. Demonstrate capa	bilities in specific soft-skill areas using hands-on and/or case-study approaches
2. Solve problems o	f greater intricacy in stated areas of quantitative aptitude and logical reasoning
3. Demonstrate high	er levels of verbal aptitude skills in English with regard to specific topics
1.Soft Skills	<ul> <li>a. Attitude building</li> <li>b. Dealing with criticism</li> <li>c. Innovation and creativity</li> <li>d. Problem solving and decision making</li> <li>e. Public speaking</li> <li>f. Group discussions</li> </ul>
2. Quantitative Aptitude and Logical Reasoning	<ul> <li>Solving problems with reference to the following topics:</li> <li>a. Vedic Maths: Fast arithmetic, multiplications technique, Criss cross, Base technique, Square root, Cube root, Surds, Indices, Simplification.</li> <li>b. Numbers: Types, Power cycle, Divisibility, Prime factors &amp; multiples, HCF &amp; LCM, Remainder theorem, Unit digit, highest power.</li> <li>c. Averages: Basics of averages and weighted average.</li> <li>d. Percentages: Basics of percentage and Successive percentages.</li> <li>e. Ratio and proportion: Basics of R &amp;P, Alligations, Mixture and Partnership.</li> <li>f. Profit ,Loss and Discount: Basic &amp; Advanced PLD</li> <li>g. Data Interpretation: Tables, Bar diagram, Venn diagram, Line graphs, Pie charts, Caselets, Mixed varieties, Network diagram and other forms of data interpretation.</li> <li>h. Syllogism: Six set syllogism using Venn diagram and tick and cross method</li> </ul>
3. Verbal Aptitude	<ul> <li>a. Verbal analogy</li> <li>b. Tenses</li> <li>c. Prepositions</li> <li>d. Reading comprehension</li> <li>e. Choosing correct / incorrect sentences</li> <li>f. Describing pictures</li> <li>g. Error spotting</li> </ul>

S. And

Department of Placement Training Sona College of Technology. Salem-636 005. 1

Sona College of Technology, Salem

Department of Sciences (Chemistry)

#### SEMESTER - III

#### MANDATORY COURSE

#### **U19GE304-** CONSTITUTION OF INDIA

#### (Common for MCT and FT)

#### **Course Outcomes**

L	Т	P	C
2	0	0	0

6

6

At the end of the course, the students will be able to

- demonstrate a capacity to work efficiently and with critical engagement with complex and sophisticated primary constitutional law texts
- 2. exhibit the capacity to craft coherent and persuasive constitutional law arguments in an adversarial context ,also recognizing the limitations of such argumentation
- apply a contextual understanding of (i) the function of the High Court as the final arbiter of constitutionality and (ii) the techniques of judicial review as applied
- practice a thorough and contextual knowledge of constitutional law doctrine particularly in its application to real or hypothetical constitutional law problems
- 5. demonstrate a high level of skill on academic and professional legal writing

#### UNIT-I Introduction to Constitution of India

Constitution of India 6 Constitutional law – meaning – importance Constitutionalism – features – elements Constitution of India – concept – importance – historical perspective – characteristics

## UNIT - II Fundamental Rights and Equality

Fundamental rights – scheme – benefits Fundamentals duties – importance – and its legal status

## UNIT - III Structure, Policies, Principles

State policy – the directive principles and its importance-The implementation of directive principles- Parliamentary form of government in India- Constitution power and status of the President-Federal structure and distribution of legislative

#### UNIT-IV Emergency rule

Financial powers between the union and the states- Amendment of the constitutional powers – procedure- Emergency provisions : articles of Indian constitution that has provisions to proclaim emergency- Emergency powers of President – national emergency President rule, financial emergency

#### UNIT – V Types and Concepts of Local Self Government The concept of local self –government and its types Comparison of the Indian constitutional scheme

20.05.2020

B.E. / B.Tech. Regulations 2019

# Sona College of Technology, Salem

Department of Sciences (Chemistry)

Directive principles of state policy and fundamental duties noted in the Indian constitution

Scheme of the fundamental rights to certain freedom under Article 19 Scope of the right to life and personal liberty under Article 21

#### **References:**

1. The Constitution of India, 1950 (Bare Act), Government Publication.

2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.

4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Total: 30 HOURS

Dr. M. Raja Course Coordinator / Sciences

Chult 20.5. 2020

Dr. C. Shanthi HOD / Sciences

28/5

**Dr. M. Renuga** Chairperson B.O.S, Science and Humanities.

20.05.2020

B.E. / B.Tech. Regulations 2019

# Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester IV Regulations 2019 Branch: Mechatronics Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total
							Contact
							Hours
		Theory					·
1	U19MAT401B	Probability and Statistical Methods	3	1	0	4	60
2	U19MC401	Fluid Power Systems	3	0	0	3	45
3	U19MC402	Thermodynamics and Heat Transfer	3	0	0	3	45
4	U19MC403	Microprocessors and Microcontroller	3	0	0	3	45
5	U19MC902	Elective: Sensors, Transducers and Instrumentation	3	0	2	4	75
6	U19GE402	Mandatory course: Environment and Climate science	2	0	0	0	30
		Practical					
7	U19MC404	Fluid Power Systems Laboratory	0	0	4	2	60
8	U19MC405	Microprocessor and Microcontroller Laboratory	0	0	4	2	60
9	U19GE401	Soft Skill and Aptitude – II	0	0	2	1	30
		•	•	To	tal Credits	22	

## **Approved By**

## Chairperson, Mechatronics Engineering BoS Dr.P.Suresh

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

## Copy to:-

HOD/ Mechatronics Engineering, Fourth Semester BE MCT Students and Staff, COE

Cours	se Out	comes												•
After	succes	sful co	mpleti	on of	this cou	rse, the	e stude	nts sho	uld be	able to	)			
CO1:	Ap	Apply the pump theory and classifications and able to use the fluid power in his/her												
	pro	professional career.												
CO2:	De	Demonstrate the principle of hydraulic cylinders and fluid motors, Gear, Vane and Piston												
	mo	otors.												
CO3:	Co	mpare	accum	ulato	rs and in	tensifie	ers and	justify	the us	sage of	accum	ulators	on rea	l time
	fee	dback	circuits	in th	eir profe	ssional	career.							
CO4:	Di	fferenti	ate the	e diff	erent Pr	neumat	tic app	roache	s for	simple	applic	ations	and al	ble to
	syı	nthesis	the nev	v app	roach sp	ecific to	o their a	applica	tion.					
CO5:	De	fine flu	idic de	vices	applicat	ions w	ith bas	ic troul	ole sho	oting n	nethodo	ologies	and ty	pes of
	Sei	vo syst	ems.											
Pre-re	equisit	e												
Fl	uid Me	echanic	s and n	nachi	nery									
CO/PO, PSO Mapping														
(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak														
60		1	Prog	ramm	e Outcom	nes (POs	s) and P	rogrami	me Speo	cific Out	come (I	'SOs)	1	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	РО 10	PO 11	PO 12	PSO1	PSO2
CO1	3	2	3	3	3	1							3	3
CO2	3	3	3										3	3
CO3	2	3	1	3	2							3	3	3
CO4	3	3	3	3		3							3	3
CO5	3	2	3	3	3	3		3				3	3	3
					Cou	irse As	sessme	nt met	hods					
				Ľ	Direct						]	Indirec	t	
Interr	al test	I (8)			Online	test (6)								
Interr	al test	II (8)			Attenda	ance (5)	)			C	1			
Interr	al test	III (8)			End ser	nester l	Examin	ation (	50)	Cours	se ena s	urvey		
Assig	nment	/semina	ar/Quiz	: (5)										
Unit (	)1: IN]	rodu	JCTIO	N TO	FLUID	POWE	R			1		09	Hours	
Introc	luctior	n to flui	d powe	er, Ad	lvantage	s of flui	id pow	er, App	licatio	n of flu	id pow	er syste	em. Typ	bes of
fluid	power	system	s, Fluic	l pow	ver symbo	ols.	-				-	-	21	
Sources of Hydraulic Power: Pumping theory – Pump classification – Gear pump, Vane Pump, piston														

pump, construction and working of pumps – pump performance – Variable displacement pumps

Onit 02. CONTROL AND ACTOATION ELEMENTS	09 Hours							
Construction of Control Components: Direction control valves – 3/2 way valve – 4/2 way valve –4/3								
valve-5/3 valve- Shuttle valve - check valve - pressure control valve - pressure	e reducing valve,							
sequence valve, Flow control valve – Fixed and adjustable - electrical control solenoic	d valves, Relays.							
Fluid Power Actuators: Linear hydraulic actuators – Types of hydraulic cylinders – Single acting,								
Double acting -special cylinders: tandem, rod-less, telescopic, cylinder cushioning mechanism-								
construction of double acting cylinder - Rotary actuators: fluid motors-gear, vane and	d piston motors.							
Unit 03: HYDRAULIC CIRCUITS	09 Hours							
Hydraulic circuits-reciprocating-quick return-pressure sequencing circuit- Rege	eneration circuit							
Drilling circuit, synchronizing circuit, speed control-meter in, meter out and bleed	off circuit, safety							
circuits								
Accumulators and Intensifiers: Types of accumulators - Accumulators circ	cuits, intensifier –							
Applications of Intensifier – Intensifier circuit.								
Unit 04: PNEUMATIC SYSTEMS AND CIRCUITS	09 Hours							
Pneumatic Components: Properties of air – Compressors – Filter, Regulator, and Lubricator Unit –								
Air control valves, Quick exhaust valves, and pneumatic actuators. Fluid Power Circuit Design,								
Pneumo-hydraulic circuit, Sequential circuit design for simple applications using case	cade method.							
Unit 05: SPECIAL SYSTEM AND MAINTENANCE 09 Hours								
	09 Hours							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo syst	tems and hydro							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems pneumatic circuits -Introduction to logic circuits.	tems and hydro							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems pneumatic circuits -Introduction to logic circuits. Introduction to fluidic devices, simple circuits, ladder diagrams, PLC applications	tems and hydro s in fluid power							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems pneumatic circuits -Introduction to logic circuits. Introduction to fluidic devices, simple circuits, ladder diagrams, PLC applications control circuit –fault finding -Failure and troubleshooting. Low cost automation.	tems and hydro s in fluid power							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems pneumatic circuits -Introduction to logic circuits. Introduction to fluidic devices, simple circuits, ladder diagrams, PLC applications control circuit –fault finding -Failure and troubleshooting. Low cost automation.	tems and hydro s in fluid power							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems         pneumatic circuits -Introduction to logic circuits.         Introduction to fluidic devices, simple circuits, ladder diagrams, PLC applications         control circuit –fault finding -Failure and troubleshooting. Low cost automation.         Theory: 45 Hrs       Tutorial: -	tems and hydro s in fluid power							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems         pneumatic circuits -Introduction to logic circuits.         Introduction to fluidic devices, simple circuits, ladder diagrams, PLC applications         control circuit –fault finding -Failure and troubleshooting. Low cost automation.         Theory: 45 Hrs       Tutorial: -         Text Books	tems and hydro s in fluid power ours: 45 Hrs							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems         pneumatic circuits -Introduction to logic circuits.         Introduction to fluidic devices, simple circuits, ladder diagrams, PLC applications         control circuit –fault finding -Failure and troubleshooting. Low cost automation.         Theory: 45 Hrs       Tutorial: -         Text Books         1. Anthony Esposito, "Fluid Power with Applications", Pearson Education,7th education	tems and hydro s in fluid power ours: 45 Hrs lition, 2013.							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems         pneumatic circuits -Introduction to logic circuits.         Introduction to fluidic devices, simple circuits, ladder diagrams, PLC applications         control circuit –fault finding -Failure and troubleshooting. Low cost automation.         Theory: 45 Hrs       Tutorial: -         Text Books         1.       Anthony Esposito, "Fluid Power with Applications", Pearson Education,7th ed         2.       Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata N	tems and hydro s in fluid power ours: 45 Hrs lition, 2013. McGraw-Hill,							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems         pneumatic circuits -Introduction to logic circuits.         Introduction to fluidic devices, simple circuits, ladder diagrams, PLC applications         control circuit –fault finding -Failure and troubleshooting. Low cost automation.         Theory: 45 Hrs       Tutorial: -         Text Books         1.       Anthony Esposito, "Fluid Power with Applications", Pearson Education,7th ed         2.       Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata N 2011.	tems and hydro s in fluid power ours: 45 Hrs lition, 2013. McGraw-Hill,							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems         pneumatic circuits -Introduction to logic circuits.         Introduction to fluidic devices, simple circuits, ladder diagrams, PLC applications         control circuit –fault finding -Failure and troubleshooting. Low cost automation.         Theory: 45 Hrs       Tutorial: -         Text Books         1. Anthony Esposito, "Fluid Power with Applications", Pearson Education,7th ed         2. Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata N 2011.         REFERENCES	tems and hydro s in fluid power ours: 45 Hrs lition, 2013. McGraw-Hill,							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems         pneumatic circuits -Introduction to logic circuits.         Introduction to fluidic devices, simple circuits, ladder diagrams, PLC applications         control circuit –fault finding -Failure and troubleshooting. Low cost automation.         Theory: 45 Hrs       Tutorial: -         Total Ho         Text Books         1. Anthony Esposito, "Fluid Power with Applications", Pearson Education,7th ed         2. Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata N 2011.         REFERENCES         1. Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall,	tems and hydro s in fluid power ours: 45 Hrs lition, 2013. vlcGraw-Hill, 2007							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems         pneumatic circuits -Introduction to logic circuits.         Introduction to fluidic devices, simple circuits, ladder diagrams, PLC applications         control circuit –fault finding -Failure and troubleshooting. Low cost automation.         Theory: 45 Hrs         Total Ho         Text Books         1. Anthony Esposito, "Fluid Power with Applications", Pearson Education,7th ed         2. Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata N 2011.         REFERENCES         1. Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall,         2. Michael J, Prinches and Ashby J. G, "Power Hydraulics", Prentice Hall, 2009.	tems and hydro s in fluid power ours: 45 Hrs lition, 2013. McGraw-Hill, 2007							
Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems         Servo systems – Hydro Mechanical servo systems, Electro-hydraulic servo systems         Introduction to fluidic devices, simple circuits, ladder diagrams, PLC applications         control circuit –fault finding -Failure and troubleshooting. Low cost automation.         Theory: 45 Hrs       Tutorial: -         Total Ho         Text Books         1. Anthony Esposito, "Fluid Power with Applications", Pearson Education,7 th ed         2. Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata N 2011.         REFERENCES         1. Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall, 2009.         3. Anthony Lal, "Oil hydraulics in the service of industry", Allied publishers, 20	by Hours tems and hydro s in fluid power burs: 45 Hrs lition, 2013. McGraw-Hill, 2007							

U19MC402	-

L	Т	Р	С
3	0	0	3

#### **Course Outcomes**

After succ	After successful completion of this course, the students should be able to							
CO1:	Express the basic concepts and laws of thermodynamics							
CO2:	Perform the analysis of air standard cycles							
CO3:	Evaluate the conduction heat transfer for a given system							
CO4:	Demonstrate the types of convection and determine heat transfer coefficient							
CO5:	Investigate the radiation effect among different surfaces							

#### **Pre-requisite**

**1.Engineering Physics** 

2.Fluid Mechanics and machinery

## CO/PO, PSO Mapping

## (3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

COs	Programme Outcomes (POs) and Programme Specific Outcome (PSOs)													
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO 10	PO 11	PO 12	PSO1	PSO 2
CO1	3	3	3	2	1	1	2	1	1	2	1	1	3	2
CO2	3	3	3	2	1	1	2	1	1	2	1	1	3	2
CO3	3	3	3	2	1	1	2	1	1	2	1	1	3	2
CO4	3	3	3	2	1	1	2	1	1	2	1	1	3	2
CO5	3	3	3	2	1	1	2	1	1	2	1	1	3	2

## Course Assessment methods

Dir	Indirect				
Internal test I (8)	Online test (6)				
Internal test II (8)	Attendance (5)	Course and current			
Internal test III (8)	End semester Examination	Course end survey			
Assignment/seminar/Quiz (5)	(60)				
Unit 01: LAWS OF THERM	9 Hours				

# Unit 01:LAWS OF THERMODYNAMICS9 HoursSystems-closed and open systems - properties, processes, cycles- equilibrium- work and heat

transfers - zeroth law - first law for a closed system and flow process - enthalpy - second law – entropy.

# Unit 02: AIR STANDARD CYCLES AND VAPOUR POWER CYCLE

9 Hours

Air standard cycles: Carnot cycle - Otto cycle - Diesel cycle - Brayton cycle - vapour power cycle: Rankine cycle- cycle efficiency

# Unit 03: INTRODUCTION TO HEAT TRANSFER AND CONDUCTION 9 Hours

Basic Concepts- mechanism of heat transfer – conduction: Fourier Law of conduction - general differential equation of heat conduction - Cartesian and cylindrical coordinates - one dimensional steady state heat conduction-introduction to transient heat conduction.

Unit 04: CONVECTION				9 Hours				
Boundary layer concept - heat transfer coefficient - types of convection - forced convection -								
external flow: flow over plates, cylinders and spheres - internal flow introduction to free								
convection.								
Unit 05: RADIATION				9 Hours				
Laws of Radiation - Stefa	an Boltzmann Law, H	Kirchhoff's Law -blacl	k body radiatio	on- radiation				
shield-radiation between s	urfaces.							
Theory: 45 Hrs	Tutorial:	Practical:	Total Hou	rs: 45 Hrs				
TEXT BOOKS								
1. P. K. Nag, Engineer	ring Thermodynamics	, Tata McGraw-Hill Pu	ublishing Comp	bany				
Limited, New Delh	i, 2013							
2. R.C Sachdeva, Fun	damentals of Engineer	ring Heat and Mass Tr	ansfer, New Ag	<u>ge</u>				
International Publi	shers, New Delhi, 2012	7						
REFERENCES								
1. P. K. Nag, Applied	Thermodynamics, Ta	ta McGraw-Hill Publis	hing Company	Limited,				
New Delhi, 2 nd edit	ion ISBN: 97800701513	314, 0070151318						
2. Yunus A. Cengel a	nd Michael A. Boles, T	Thermodynamics - An	Engineering Ap	pproach in SI				
Units, Tata McGrav	w Hill Publishing Com	pany, New Delhi, 201	0					
3. Frank P. Incropera	and David P. DeWitt	t, Fundamentals of He	eat and Mass T	ransfer, John				
Wiley and Sons Pv	t. Ltd., Singapore, 2006	ó.						
4. T. D. Eastop and	Mc Conkey, Applied	Thermodynamics for	Engineering T	echnologists,				
Pearson, New Delh	i <i>,</i> 2004.							
5. C. P. Kothandaram	an, S. Domkundwar a	nd A. V. Domkundwa	r, A course in T	hermal				
Engineering, Dhan	patrai and Co. Pvt. Lto	l., New Delhi, 2012						

Cours	se Out	comes													
After	succes	ssful co	mpleti	on of t	his cou	rse, th	e stude	nts sho	ould be	e able	to				
CO1:	Οι	Outline the architecture, discuss the addressing modes, instruction set interrupt structure													
	an	and develop skill in simple program writing of Intel 8085 microprocessor													
CO2:	Di	Discuss various Peripheral Interfacing function and interface with 8085 processor													
CO3:	Οι	utline th	ne arch	itectur	e, discu	iss the	addres	sing m	odes, i	nstru	ction s	set in	terru	ıpt stru	cture
	an	and develop skill in simple program writing of Intel 8086 microprocessor													
CO4:	Ex	Explain the architecture, discuss the addressing modes, instruction set interrupt structure													
	an	and develop skill in simple program writing of Intel 8051 microcontroller													
CO5:	Ap	oply the	e interf	acing t	echniqu	ues in 1	motors	and tra	affic lig	ght co	ntroll	er for	r mic	rocont	roller
	ba	sed sim	ple app	olicatio	ons										
Pre-re	equisit	e													
	Γ	Digital e	electror	ics											
					C	CO/PO,	PSO N	<b>Iappin</b>	g						
		(3/2	2/1 indi	icates s	trength	of cor	relatior	n) 3-Stro	ong, 2-	Mediu	ım, 1-	Weak	ς		
			Prog	ramme	Outcom	es (POs	) and Pi	rogramr	ne Spec	cific O	utcome	e (PSC	)s)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PC	) ]	PO	PSO	PSO
											11		12	1	2
CO1	3	3	3	2	2				2					3	2
CO2	3	3	3	2	2				2					3	2
CO3	3	2	3	2	2				2					3	2
CO4	3	3	3	2	2				2					3	2
05	3	3	3	Z	Z				Z					3	2
					Cou	rse Ass	sessme	nt metł	nods						
				Т	Direct	100 1100			loub			I1	ndire	oct	
Intorn	altoct	1 (8)		-	Onlin	a tast (6	()								
Intern		I (0)			Allen	lest (c	) _)								
Intern	al test	II (8)			Attend	iance (	5)		((0))		Cours	e end	l surv	vey	
Intern	al test	III (8)			End se	emester	r Exam	ination	(60)						
Assig	nment	/semina	ar/Quiz	z (5)											
Unit (	)1: 808	5 MICI	ROPRO	DCESS	OR							09 1	Hour	rs	
8085 a	rchite	cture –	instruc	tion se	t – add	ressing	; modes	s– macł	nine cy	cles a	nd tim	ing d	liagr	ams –	
interr	upts -	memor	y interf	facing,	typical	EPRO	M and	RAM I1	nterfac	ing.					
Unit (	)2: PEI	RIPHEI	RALS I	NTER	FACIN	G OF 8	8085					09 ]	Hou	rs	
Archi	tocture	and r	rogram	nmina	of ICs	8255	PPI 82	50 PIC	8251	I IS A	RT 87	70 レ	ovbo	ard di	enlav

Architecture and programming of ICs: 8255 PPI, 8259 PIC, 8251 USART, 8279 keyboard display controller ,8254 timer/ counter.

Unit 03: 8086 MICROPRO	CESSOR			09 Hours					
8086 architecture – 8086 addressing modes – memory organization instruction set – 8086 assembly									
language programming – interrupts.									
Unit 04: MICROCONTROLLER 09 Hours									
8051: Architecture, I/O pins - ports and circuits - memory organization (internal and external) -									
counters and timers – serial data I/O – interrupts. PIC18F: Architecture, I/O pins – ports and circuits									
Unit 05: 8051 PROGRAM	MING AND APPLIC	ATIONS		09 Hours					
8051 addressing modes –	instruction set –Interf	acing of stepper motor	, speed c	ontrol of DC motor,					
Introduction to raspberry a	and arduino boards.								
Theory: 45 Hrs	Tutorial: -	Practical: -	Tota	al Hours: 45 Hrs					
Text Books									
1. Krishna Kant, "Mic	croprocessor and Micr	ocontrollers", Eastern C	Company	Edition, Prentice					
Hall of India, New	Delhi, 2007.								
2. R.S. Gaonkar, 'Micr	roprocessor Architectu	are Programming and A	Applicatio	on', with 8085,					
Wiley Eastern Ltd.,	New Delhi, 2013.								
3. Soumitra Kumar M	landal, Microprocesso	r & Microcontroller Ard	chitecture	e, Programming &					
Interfacing using 80	085,8086,8051, McGrav	w Hill Edu,2013.							
REFERENCES									
1. Muhammad Ali Ma	azidi & Janice Gilli Ma	azidi, R.D.Kinely 'The 8	051 Micro	o Controller and					
Embedded Systems	s', PHI Pearson Educa	tion, 5th Indian reprint,	2003.						
2. N.Senthil Kumar, N	A.Saravanan, S.Jeevan	anthan, 'Microprocesso	rs and M	licrocontrollers',					
Oxford University	Press, 2010.								
U19MC902

# **Elective:** SENSORS, TRANSDUCERS AND

**INSTRUMENTATION** 

L	Т	Р	C
3	0	2	4

### **Course Outcomes**

After successful completion of this course, the students should be able to
----------------------------------------------------------------------------

CO1: Analyse the characteristics of a sensor or transducer.

CO2: Identify the different types of mechanical sensors.

CO3: Predict the different types of sensors for Industrial variables.

CO4: Design a signal conditioning circuit and data acquisition system

CO5: Implement smart sensors in digital Industries.

### **Pre-requisite**

1. Basic Electrical and Electronics Engineering

### CO/PO, PSO Mapping

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

Programme Outcomes (POs) and Program						amme Specific Outcome (PSOs)								
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2			2			2			3	2
CO2	3	2	3	2			2			2			3	2
CO3	3	2	3	2			2			2			3	2
CO4	3	3	2	2			2			2			3	2
CO5	3	3	3	2			2			2			3	2

### **Course Assessment methods**

D		Indirect	
Internal test I (8)	Online test (6)	Cours	e end survey
Internal test II (8)	Attendance (5)		
Internal test III (8)	End Semester Examination (60)		
Assignment/Seminar/Quiz (5)			
Unit 01: INTRODUCTION TO MEASUREMENT SYSTEMS09 + 06 Hours			

### it 01: INTRODUCTION TO MEASUREMENT SYSTEMS

Sensors & Transducer: Definition - Classification - selection of sensors - Static and Dynamic Characteristics - Errors in Measurements - Problems on error measurements - Transduction principles: Resistive, Inductive and Capacitive.

09 + 06 Hours

Measurement of displacement using Potentiometer, LVDT & Optical Encoder - Measurement of force using strain gauge - Measurement of pressure using LVDT based on diaphragm & piezoelectric sensor – Position sensors – Angular rate sensors.

### **Unit 03: SENSORS FOR AUTOMATION II**

09 +06 Hours

Measurement of temperature using Thermistor, Thermocouple & RTD - Concept of thermal imaging - Measurement of position using Hall effect sensors - Proximity sensors: Inductive &

Capacitive, Inertial sensors – Flow Sensors: Ultrasonic & LASER – Level Sensors: Ultrasonic & Capacitive.

Unit 04: SIGNAL CONDITIONING AND DATA ACQUISITION 09 +06 Hours

Signal Conditioning: Basic block diagram of Signal conditioning Analog and Digital IO – Types of ADC: successive approximation and sigma-delta – Types of DAC: Weighted Resistor and R-2R Ladder type – Data acquisition: Elements of data acquisition and control - Overview of I/O process - single channel & multichannel data acquisition.

### Unit 05: INTELLIGENT SENSORS

09 +06 Hours

Intelligent Sensors: General Structure of smart sensors & its components – Characteristic of smart sensors: Self calibration, Self-testing & self-communicating – Application of smart sensors: Automatic robot control, automobile engine control & Digital industries.

Theory: 45 Hrs	Tutorial:	Practical: 30Hrs	Total Hours: 75 Hrs
TEXT BOOKS			

### 1. D Patranabis, "Sensors and Transducers", PHI 2nd Edition, 2015.

2. DVS Murthy, "Transducers and Instrumentation", PHI 2nd Edition 2013.

### REFERENCES

- 1. Sawney A K and Puneet Sawney, "Measurements and Instrumentation and control", 12th edition, Dhanpat Rai and Co, New Delhi, 2013.
- 2. S. Gupta, J.P. Gupta "PC interfacing for Data Acquisition & Process Control", 2nd ED Instrument Society of America, 1994.
- 3. A.D. Helfrick and W.D. Cooper, "Modern Electronic Instrumentation & Measurement Techniques", PHI, 2001.
- 4. Deoblin E.O. "Measurement Systems Application and Design", McGraw Hill, 4th Edition, 2005.

<b>U</b> 1	9M	C4	า4
UI	2141	C4	<b>J</b> 4

L	Т	Р	С
0	0	4	2

Cours	e Out	comes												
After	succe	ssful c	omple	tion of	this c	ourse,	the stu	udents	shou	ld be	able t	to		
CO1:	D	emons	strate t	he wor	king p	orincip	les of I	Hydrau	alic, Pi	neum	atic p	ump a	nd var	ious
	actuators.													
CO2:	C	Constru	ct vari	ous hy	drauli	c and,	Pneun	natic ci	rcuits	using	g valv	es.		
CO3:	P	erform	Indus	strial ba	ased ci	rcuit o	peratio	ons.						
Pre-re	quisi	te:	м <b>1</b>		1 (1	11.	•							
	1. 2	Fluid I	Mecha [.]	nics an	d fluic	i mach 1 mach	inery l	aborat	orv					
	2.	i iuiu i	viceria.	inco un	C	$O/PO_{c}$	PSO N	Mappi	ng					
		(3/2/2	l indic	ates sti	rength	of cor	relation	n) 3-St	rong, 2	2-Mec	lium,	1-Wea	k	
		Pro	ogram	me Ou	tcome	s (POs)	) and F	rogran	nme S	pecifi	ic Out	come	(PSOs)	
COs	РО	РО	РО	РО	РО	РО	РО	РО	DOO	РО	РО	РО	PS	
	1	2	3	4	5	6	7	8	P09	10	11	12	O1	P50 2
CO1	3	3	3		3		2			3		2	2	2
CO2	3	3	3		3		2			2		2	2	2
CO3	3	3	3		3		3			2		2	3	3
					Cour	rse Ass	sessme	ent me	thods					1
CIET	ECT I	(20)			L	Jirect							Cour	direct
	$L_{51-1}$	(20)				(3)							SULTVE	se enu
CIE T	EST-II	(20)			End	semest	er Exa	minati	on (40	)			Surve	. y
List of	f Expe	erimen	ts		Litta					)				
1. [A	1 Stud	v of C	onstru	ction a	nd wo	rking (	of Hvd	raulic	eauip	ments	5			
[B]	Study	v of Co	nstruc	tion an	d wor	king P	neuma	tic equ	lipmei	nts				
2. De	esign a	and tes	ting of	hydra	ulic ci	rcuit fo	or pres	sure co	ontrol	using	press	sure re	lief val	ve
3. De	sign a	and tes	ting of	hydra	ulic ci	rcuit fo	or flow	contro	ol usin	g pre	ssure	/non-p	ressur	e
CO	mpen	sated f	low co	ntrol v	alve.									
4. De	esign a	and tes	ting of	hydra	ulic ci	rcuit fo	or direc	ction c	ontrol	using	; two-	way v	alves	
5. De	esign a	and tes	ting of	pneur	natic c	ircuit f	or sing	gle acti	ng cyl	inder	•			
6. De	6. Design and testing of pneumatic circuit for double acting cylinder.													
7. De	esign a	and tes	ting of	pneur	natic c	ircuit f	for flov	v conti	rol usi	ng me	eter in	ı circui	t.	
8. De	esign a	and tes	ting of	pneur	natic c	ircuit f	for flov	v conti	rol usi	ng me	eter ou	ut circı	uit	
9. De	esign a	and tes	ting of	pneur	natic c	ircuit f	or logi	ic cont	rols					
10. De	esign a	and tes	ting of	pneur	natic c	ircuit f	for with	h mult	iple cy	linde	er sequ	lences		
11. Mo	odellii	ng and	analys	sis of h	ydrau	lic and	pneur	natic s	ystem	usin	g softv	ware		
												Total	Hours	: 60 Hrs

<b>I</b> 11	<b>9</b> M	C4	05

## MICROPROCESSOR AND MICROCONTROLLER LABORATORY

L	Т	Р	C
0	0	4	2

## **Course Outcomes**

### After successful completion of this course, the students should be able to

CO1:	Write an assembly language program to perform some basic arithmetic operations and
	to interface various devices using 8085 instructions.
CO2:	Write an assembly language program to execute basic arithmetic operations using 8086
	processor and 8051 microcontroller.
CO3:	Solve the real time problems using microprocessor and microcontroller.

### Pre-requisite

- 1. Electron devices and circuits
- 2. Electron devices and circuits Laboratory

### CO/PO, PSO Mapping

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

COs		Programme Outcomes (POs) and Programme Specific Outcome (PSOs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	3	3	3						2		2	3	2		
CO2	3	3	3	3						2		2	3	2		
CO3	3	3	3	3						2		2	3	2		

Course Assessment methods							
	Indirect						
CIE TEST-I (20)	Quiz-II (5)	Course end survey					
Quiz-I (5)	RTPS (10)						
CIE TEST-II (20)	End semester Examination (40)						
	•	•					

### List of Experiments

- 1. Assembly Language Programming of 8-bit binary addition and subtraction using 8085 processor.
- 2. Assembly Language Programming of 8-bit binary multiplication and division using 8085 processor.
- 3. Assembly Language Programming of 16-bit addition and multiplication using 8085 processor.
- 4. Assembly Language Programming of 8-bit Minimum / Maximum number, Ascending / Descending order using 8085 processor.
- 5. Assembly Language Programming of Code converter (BCD to Binary and Binary to BCD) using 8085 processor.
- 6. Assembly Language Programming of Interface Experiments (A/D and D/A interface) using 8085 processor.

7.	Interfacing and Programming of Stepper Motor control using 8085 processor.
8.	Assembly Language Programming of 16-bit binary addition and subtraction using 8086
	processor.
9.	Assembly Language Programming of 16-bit binary multiplication and division using 8086
	processor.
10.	Assembly Language Programming of 8-bit binary addition and subtraction using 8051
	microcontrollers.
11.	Study and Interface of Arduino board.
12.	Study and Interface of raspberry board.
	Total Hours: 60 Hrs

Semester – IV	1110CE401 SOFT SKILLS AND ADTITUDE II	L	Т	P	P C Marks						
	UI9GEAUI-SOFT SKILLS AND AFTITUDE - II	0	0	2	1	100					
Course Outcomes At the end of the co	ourse the student will be able to:					4					
1. Demonstrate cap	abilities in additional soft-skill areas using hands-on and/	or ca	se-st	udy	ap	oroaches					
2. Solve problems and logical reaso	of increasing difficulty than those in SSA-I in given are ning and score 65-70% marks in company-specific interna-	as o al te	f qua sts	anti	ativ	e aptitude					
3. Demonstrate gre and score 65-70	ater than SSA-I level of verbal aptitude skills in English www. www.arks.in.company-specific internal tests	with	rega	rd t	o gi	ven topics					
	Demonstrating soft-skill capabilities with reference to	o th	e foll	owi	ng	topics:					
1.Soft Skills	<ul> <li>a. SWOT</li> <li>b. Goal setting</li> <li>c. Time management</li> <li>d. Stress management</li> <li>e. Interpersonal skills and Intrapersonal skills</li> <li>f. Presentation skills</li> </ul>			Ŷ							
	g. Group discussions										
2. Quantitative Aptitude and Logical Reasoning	<ul> <li>Solving problems with reference to the following topics:</li> <li>a. Equations: Basics of equations, Linear, Quadratic Equations of Higher Degree and Problem on ages.</li> <li>b. Logarithms, Inequalities and Modulus</li> <li>c. Sequence and Series: Arithmetic Progression, Geometric Progression, Harmonic Progression, and Special Series.</li> <li>d. Time and Work: Pipes &amp; Cistern and Work Equivalence.</li> <li>e. Time, Speed and Distance: Average Speed, Relative Speed, Boats &amp; Streams, Races and Circular tracks and Escalators.</li> <li>f. Arithmetic and Critical Reasoning: Arrangement, Sequencing, Scheduling, Network Diagram, Binary Logic, and Logical Connection.</li> <li>g. Binary Number System Binary to decimal, Octal, Hexadecimal</li> </ul>										
3. Verbal Aptitude	<ul> <li>Demonstrating English language skills with reference</li> <li>a. Critical reasoning</li> <li>b. Theme detection</li> <li>c. Verbal analogy</li> <li>d. Prepositions</li> <li>e. Articles</li> <li>f. Cloze test</li> <li>g. Company specific aptitude questions</li> </ul>	e to	the f	olla	win	g topics:					

Dr.S.Anita

Head/Training

Sona College of Technology, Salem

Department of Sciences (Chemistry)

#### SEMESTER - IV

#### MANDATORY COURSE

#### U19GE402 - ENVIRONMENT AND CLIMATE SCIENCE

#### (Common for MCT, IT, FT, ECE and BME)

#### **Course Outcomes:**

L T P C 2 0 0 0

At the end of the course, the student will be able to

- 1. state the importance of the acute need for environmental awareness and discuss significant aspects of natural resources like forests, water and food resources.
- explain the concepts of an ecosystem and provide an overview of biodiversity and its conservation.
- 3. explain environmental based pollution their causes, effects and their remedial measures
- 4. discuss their causes, effects and the control measures of Global Warming, Acid Rain, Ozone Layer Depletion
- 5. describe the effect of climate change due to pollution

#### UNIT I INTRODUCTION TO ENVIRONMENTAL STUDIES AND NATURAL RESOURCES 6

Definition, Scope and Importance Forest Resources:- Use and over - exploitation, deforestation, Case Studies, Water Resources:- Use and Over-Utilization of Surface and ground water, Floods, Drought, Food Resources- Effects of Modern Agriculture, Fertilizer- Pesticide Problems-Role of an Individual in Conservation of Natural Resources.

#### UNIT II ECOSYSTEMS AND BIODIVERSITY

Structure and Function of an Ecosystem- Energy Flow in the Ecosystem -Food Chains, Food Webs and Ecological Pyramids.

Introduction to Biodiversity –Value of Biodiversity: Consumptive Use, Productive Use, Social, Ethical, Aesthetic and Option Values –India as a Mega-Diversity Nation — Threats to Biodiversity: Habitat Loss, Poaching of Wildlife, Man-Wildlife Conflicts – Endangered and Endemic Species of India – Conservation of Biodiversity: In-Situ and Ex-Situ conservation of Biodiversity.

#### UNIT III ENVIRONMENTAL POLLUTION

Definition – Causes, Effects and Control Measures of:- (A) Air Pollution (B) Water Pollution (C) Soil Pollution (D) Marine Pollution (E) Noise Pollution (F) Thermal Pollution, Solid Waste Management- Effects and Control Measures of Acid Rain,- Role of an Individual in Prevention of Pollution.

23.01.2021

B.E. / B.Tech. Regulations 2019

6

#### Sona College of Technology, Salem

#### Department of Sciences (Chemistry)

### UNIT IV CLIMATE CHANGE ON THE ENVIRONMENT

Sustainable Development- - Climate Change- Causes and effects of Global Warming - Effect of global warming in food supply, plants, sea, coral reef, forest, agriculture, economy - Kyoto Protocol in reduction of greenhouse gases - Ozone Layer Depletion - mechanism, effects and control measures- Montreal Protocol to protect ozone layer depletion - Rain Water Harvesting - .Effect of climate change due to air pollution Case study - CNG vehicles in Delhi

### UNIT V EFFECT OF CLIMATE CHANGE ON POLLUTION

Fungal diseases in forests and agricultural crops due to climatic fluctuations - Growing energy needs - effect of climate change due to non-renewable energy resources. Renewable energy resources in the prevention of climatic changes- Effect of climatic changes in ground water table, garments, monuments, buildings, consumption of energy, agriculture and in electric power sector - Carbon credit - carbon footprint - disaster management -Role of an individual to reduce climate change.

# TOTAL: 30 HOURS

#### Text Books:

- 1. Miller, T.G. Jr., "Environmental Science", Wadsworth Pub. Co. 2018
- 2. Anubha Kaushik and Kaushik, "Environmental Science and Engineering" New Age International Publication, 4th Multicolour Edition, New Delhi, 2014.

#### **References:**

- 1. S. Radjarejesri et al., "Environmental Science" Sonaversity, Sona College of Technology, Salem, 2018.
- 2. Masters, G.M., "Introduction to Environmental Engineering and Science", Pearson Education Pvt., Ltd., 2nd Edition, 2004.
- 3. Erach, B., "The Biodiversity of India", Mapin Publishing P.Ltd., Ahmedabad, India.
- 4. Erach Bharucha, "Textbook of Environmental Studies for Undergraduate Courses", 2005, University Grands Commission, Universities Press India Private Limited, Hyderguda, Hyderabad - 500029.

Dr. M. Raja

Course Coordinator / Sciences

to be 14 " 14th about all the Pathers readout I satisfy the

Dr. C. Shanthi HOD / Sciences

LEND RELATED STATE DATA

st. Cutter RENTE TECTO IN INCOME

1 PR BALF JANKER 1, D.S. R. - Marker

Dr. M. Renuga Chairperson BOS. Science and Humanities

23.01.2021

B.E. / B.Tech. Regulations 2019

and I. A set of Provident Provide

strate of his and states for the second second

6

# Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester V under Regulations 2019 Branch: Mechatronics Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours			
	Theory									
1	U19MC501	CAD/CAM	3	0	0	3	45			
2	U19MC502	Theory of machines	3	0	0	3	45			
3	U19MC503	Data structure using python	3	0	2	4	75			
4	U19MC504	Industrial Automation	3	0	0	3	45			
5	noc22_me123	<b>NPTEL-</b> Automation in manufacturing	3	0	0	3	45			
		Practical								
6	U19MC505	CAD/CAM Laboratory	0	0	3	1.5	45			
7	U19MC506	Industrial Automation Laboratory	0	0	3	1.5	45			
8	U19MC507	Mini Project-I	0	0	2	1	30			
9	U19GE501	Soft Skills and Aptitude – III	0	0	2	1	30			
				To	tal Credits	21				

### **Approved By**

Chairperson, Mechatronics Engineering BoS Dr.P.Suresh Member Secretary, Academic Council Dr.R.Shivakumar

Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

### Copy to:-

HOD/ Mechatronics Engineering, Fifth Semester BE MCT Students and Staff, COE

U19MC501					C					L	Г	<b>т</b>	P	С
U	ISINC	501			C	AD/CA	A IVI			3	0	)	0	3
Cours	se Out	comes												
After	succe	ssful co	omplet	tion of	this co	ourse, t	he stu	dents s	hould	be abl	e to			
CO	l: Sta	te fund	ament	al conc	epts of	Comp	outer ai	ded de	esign ar	nd Moo	deling	Techni	ques.	
CO2	2: Exp	plain co	nstruc	ction ar	nd deve	elopme	ent of n	nodern	CNC 1	machin	e and g	give th	e detai	ls of
	Au	tomatio	c Tool	change	rs (AT	C).								
CO	<b>3:</b> Wr	ite a Cl	NC pai	rt prog	ram fo	r manu	lfacturi	ng real	l time c	compor	nent ap	plicati	ons.	
CO4	<b>1:</b> Exp	$\frac{1}{2}$	nd dese	cribe th	e proc	ess pla	nning	and gro	oup tec	hnolog	y in C	IM env	vironm	ent.
COS	5: Exp	plain a	bout t	he con	nputer	aided	qualit	y cont	rol sys	stems	based	СММ	testing	g and
Drea rea	exp	blain fle	exible r	nanuta	cturing	g syste	ms.							
Pre-re	$\frac{1}{1}$	te nainaar	ina ar	anhia										
	1. С. 2 М	lanufac	turing	techno	logy									
	<u> </u>	ununu	.uring		<u>, 1059</u>	O/PO	PSO M	Mannir	าย					
		(3/2/1	l indic	ates st	rength	of cor	relation	n) 3-St	rong, 2	-Mediı	1m, 1-V	Neak		
6.0		Pro	grami	ne Ou	tcomes	(POs)	and P	rogram	me Sp	ecific (	Jutcor	ne (PS	Os)	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2						3					3	3
CO2	3	3	3	3			3						3	3
CO3	3	2	3	3	3		3					3	3	3
CO4	3	2	3		3		3	3	3	3	3		3	3
CO5	3		3		3		3	3	3	2	3		3	3
					Cou	rse Ass	sessme	nt met	hods					
				]	Direct							Indi	rect	
Interr	al test	t I (8)			Onli	ne test	(6)							
Interr	al test	t II (8)			Atte	ndance	e (5)				Cou	irse en	d surve	ey
Interr	al tes	t III (8)		:_ (F)	End	semest	ter Exa	minatio	on (60)					5
Assig	nmen	t/semin	ar/Qu	lz (5)		_								
Unit 01	1: CO	MPUTI	ER AII	DED D	ESIGN	J							9 Ho	urs
Introc	luction	n to C	CAD, I	Interac	tive di	splay	device	es, Ope	erator	input/	output	devi	ces, Gi	aphic
stand	ards,	2D Tra	insform	nation-	Scalir	ng, Tra	nslatio	n and	Rotati	on. Ge	eometri	ic Mo	deling-	Wire
Frame	e Mo	deling,	Surfa	ice Mo	odeling	, Soli	d Moo	deling-	Constr	uctive	solid	geor	etry (	CSG),
Bound	dary k	leprese	ntatior	1 (В-Ке	p).									
Unit 0	2: CO	MPUT	ER AI	DED N	IANU	FACTU	JRINC	J					9 Ho	urs
CNC	Tech	nology-	Classif	ficatior	of C	NC sy	stems-	Contou	iring S	bystem-	Interp	olators	s, open	loop
and o	closed	loop	CNC	system	is, Hai	dware	featu	res-Dir	ect Nu	umeric	al Cor	ntrol. (	Constru	action
featur	res - S	tructur	al mei	mbers-	Slide v	vays-Si	des lir	hear be	arings	-Ball so	rews-S	spindle	e drive	s and
feed c	irives	- work	holdin	ig devi	$\frac{\cos anc}{2}$	i tool r	iolding	device	es-Auto	omatic	1001 Cl	nanger	'S	
Unit 0	3: CN	C – PR	OGRA	MMI	NG								9 Ho	urs
Comp dimer	outer nsioni	Nume ng, Ma	rical ( nual F	Contro Part pr	l code ogram:	es- Pu ming f	nched or poi	tapes nt to p	, G,M point- 1	Code Linear,	e, Stai Circu	ndards lar int	s, Typ erpolat	es of tion
Canne	Canned cycles and subroutines. CNC programming practices for Turning and Milling													

Operations. **Unit 04: GROUP TECHNOLOGY AND CAPP** 9 Hours Introduction to CIM, Role of Elements, CIM Networking, Group Technology, Part Families, parts Classification & Coding, GT Machine cells, Shop floor phases, Benefits of GT. Computer Aided Process Planning (CAPP), Retrieval type, Generative type Process Planning Systems, Benefits of CAPP. **Unit 05: COMPUTER AIDED QUALITY CONTROL AND FMS** 9 Hours Computer Aided Quality Control (CAQC)- Introduction, Contact Inspection methods, Non-Contact Inspection methods, Co-ordinate Measuring Machine. Flexible manufacturing Systems-Introduction, Scope, Types, Elements and Benefits of FMS. Theory: 45 Hrs Tutorial: --Practical:--**Total Hours: 45 Hrs TEXT BOOKS** 1. Ibrahim Zeid." CAD-CAM Theory and Practice", Tata McGraw-Hill Publishing Co. Ltd. 2nd edition. 2. P.Radhakrishan, S.Subramanyan, V. Raju, "CAD/CAM/CIM". New Age International Publishers, 3rd Edition 2012. 3. Mikell P. Groover and Emory W. Zimmers, Jr, "CAD/CAM Computer Aided and Manufacturing". 4. Eastern Economy Edition, PHI publishers 2007. REFERENCES 1. Mikell.P.Groover "Automation, Production Systems and computer integrated and manufacturing", Pearson Education 2016. 2. P.N. Rao, "CAD/CAM Principles and Applications". Tata McGraw Hill Publications, 2010. 3. William .M. Neumann and Robert .F. Sproul, "Principle of Interactive Computer Graphics" McGraw Hill Book Co. Singapore, 2001. 4. Paul G. Ranky, "Computer Integrated Manufacturing- An Introduction with Case Studies" Prentice Hall International, 2004.

### **Course Outcomes**

### After successful completion of this course, the students should be able to

**CO1:** Identify and enumerate different link-based mechanisms with a force-motion relationship in components subjected to external forces.

**CO2:** Design and evaluate the performance of different cams and followers.

**CO3:** Interpret the force analysis of simple mechanisms.

**CO4:** Design and evaluate the performance of rotating & reciprocating masses.

**CO5:** Value the principles in mechanisms used for governing of machines

### Pre-requisite

### Engineering Mechanics

### CO/PO, PSO Mapping

(3/2/1 indicates the strength of correlation) 3-Strong, 2-Medium, 1-Weak

COs		Programme Outcomes (POs) and Programme Specific Outcome (PSOs)														
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO 10	PO11	PO 12	PSO1	PSO2		
CO1	3	3	3	3			3			3		3	3	3		
CO2	3	3	3	3			3			2			3	3		
CO3	3	3	3	3						2		2	3	3		
CO4	3	3	3	3						2			3	3		
CO5	3	3	3	3			3						3	3		

### **Course Assessment methods**

D		Indirect	
Internal test I (8)	Online test (6)		
Internal test II (8)	Attendance (5)	Course	a and autors
Internal test III (8)	End semester Examination (60)	Cours	e end survey
Assignment/seminar/Quiz (5)			

### Unit 01: INTRODUCTION TO MECHANISMS

9 Hours

Definitions Link or Element, Kinematic Pairs, Kinematic chain, Degrees of Freedom, Grubler's Criterion (without derivation), Kinematic Chain, Mechanism, Structure, Mobility of Mechanism, Mechanical Advantage, Transmission angle. Inversions of Kinematic Chains: Four bar chain, Single slider and Double slider. Common Mechanisms, Straight line Mechanisms (Exact & Approximate Straight line).

### Unit 02: KINEMATICS OF CAM

Cams: Types of cams, Types of followers. Displacement, Velocity & Acceleration Time curves for cam Profiles. Disc cam with Reciprocating follower having Knife- Edge, Roller & Flat-face follower, Disc cam with oscillating roller follower. Follower motions including, SHM, Uniform velocity, Uniform acceleration & retardation and Cycloidal motion.

9 Hours

UNIT 03: FORCE ANALYSIS	9 Hours
Static force analysis: Static equilibrium. Equilibrium of two and t	hree force members.
Members with two forces and torque, free body diagrams. Static force	e analysis of four-bar
mechanism and slider-crank mechanism with and without friction.	,
Dynamics force analysis: Alembert's principle, Inertia force, inertia to	orque, Dynamic force
analysis of reciprocating engine (Analytical method). Introduction to vi	bration.
Unit 04: BALANCING OF ROTATING & RECIPROCATIN	JG 9 Hours
MASSES	
Balancing of Rotating Masses: Static and dynamic balancing, balance	ing of single rotating
mass by balancing masses in same plane and in different planes.	Balancing of several
rotating masses by balancing masses in same plane and in different pla	ines.
Balancing of Reciprocating Masses: Balancing of Locomotives, Multi cy	vlinder engine, partial
balancing of locomotive engines.	
Unit 05: GYROSCOPE & GOVERNORS	9 Hours
Governors:	
Types of governors; force analysis of Watt, Porter (Problem alone) an	d Hartnell governors
(Theory). Controlling force, stability, sensitiveness, isochronism, effort	and power.
Gyroscope:	
Gyroscopic couple, Effect of gyroscopic couple on ship, aeroplan	ne, stability of two-
wheelers.	_
Theory: 45Hrs Tutorial: Practical: Total	Hours: 45 Hrs
TEXT BOOKS	
1. Ratan, S.S., "Theory of Machines", Tata McGraw Hill Publishing co Edition, 2014.	mpany Ltd., 4th
2. Sadhu Singh., "Theory of Machines", Pearson Education India, 2nd	l Edition 2013.
3. Thomas Bevan, "Theory of Machines", Pearson Education India, 19	948, 3rd Edition,
2010.	
REFERENCES	
1. R. S. Khurmi, J. K. Gupta. "Theory of Machines" Eurasia Publishin	g House, 2008.
2. B.L. Balleney, "Theory of Machines", Khanna Pub. Delhi, 2012.	
3. Shigley J.E and Uicker J.J "Theory of Machines and Mechanisms," 2011.	McGraw Hill ISE,
4. Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", Ne	w Age Intl.,New
Deini, 2nd Edition, 2012.	The New Dolhi
2007.	

U19MC503				ДАТ	TA ST	RUCTI	L	Т	P	C				
U	191010	.000		DIII		NUCI				511	3	0	2	4
Cour	se Ou	tcome	5											
After	succ	essful o	comp	letior	n of th	is cour	se, the	studer	ts sho	uld be a	ble to			
CO1	Im	pleme	nt Cl	ass us	ing py	thon.								
	Im	pleme	nt ab	stract	data	types f	or linea	ar data	struct	ures and	d Solve	real w	orld pr	oblems
CO2:	us	ing sta	ck an	ıd que	ue lin	ear data	a struct	cures.						
CO3	De	esign al	gorit	hms t	o solv	e comn	non gra	nph pro	blems	•				
CO4	A	oply va	rious	s non-	linear	tree da	ta strue	ctures i	n real	time app	olication	ns.		
CO5	Ar	nalyzev	vario	us sor	ting, s	searchir	ng and	hashin	g techı	niques.				
Pre-r	equis	ite												
P	ython	progra	mmi	ng										
						CO	'PO, PS	SO Ma	pping					
		(3/	2/1 ir	ndicat	es stre	ngth of	correl	ation) 3	3-Stron	g, 2-Mee	dium, 1	-Weak		
COs		P	rogr	amme	Outc	omes (I	POs) an	id Prog	ramm	e Specifi	c Outco	ome (PS	SOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	1			2	2	1	3	3	2
CO2	3	3	2	2	2	1			3	2	1	3	3	2
<u>CO4</u>	3	3	3	2	2	1			3	2	1	3	3	2
CO5	3	3	3	2	2	1			3	2	1	3	3	2
						Course	Asses	sment	metho	ds				
					Di	rect						Inc	lirect	
Inter	nal tes	st I (8)				Online	test (6)							
Inter	nal tes	st II (8)				Attenda	ance (5	)			C			
Inter	nal tes	st III (8)	)			End ser	nester	Examir	nation	(60)	C	ourse e	ena surv	vey
Assig	gnmer	nt/semi	nar/Ç	Quiz (S	5)									
Unit	01: AE	<b>S</b> TRA	CT I	DATA	ТҮРЕ	ES							9+6	Hours
Intro	ductio	on to p	rogr	ammi	ng, al	gorithm	ns and	data s	tructu	res - Ab	stract l	Data T	ypes (A	DTs) –
ADT	s and	classes	5 – Ir	ntrodu	iction	to OOI	P – clas	sses in	Pytho	n - Basio	c algori	thmic	analysis	: input
size,	asymj	ptotic n	otati	ons.										
Sugg	ested	Activi	ties f	for pra	nctical	:								
•	Imp	lement	Clas	ss usin	ıg pytl	non								
Unit	02: LI	NEAR	DA	ГА ST	RUC	<b>FURES</b>							9+6	Hours
List A	ADT –	array-	base	d imp	lemen	tation -	- linked	l list in	npleme	entation	- Appli	cations	s of lists	- Stack
ADT	– Que	eue AD	T - A	Applica	ations	of Stac	ks and	queue	s.					
Sugg	ested	Activi	ties f	for pra	nctical	:								
٠	Implementation of Lists													
٠	Implementation of Stacks													
٠	Implementation of Queues													

Т

Т

Τ

Unit 03	: NON LINEAR DATA STRUCTUR	RES - 1		9+6 Hours				
Introd	uction to Non Linear Data Structure	es - Tree ADT – Binary Tr	ree ADT – Tree	traversals -				
Expres	sion trees - Binary search trees - Hea	p – Applications of heap						
Sugge	sted Activities for practical:							
•	Implementation of Binary Trees							
•	Implementation of Tree Traversal							
•	Implementation of Binary Search Tre	ees						
•	Implementation of Heap							
Unit 04	NON LINEAR DATA STRUCTUR	RES - 2		9+6 Hours				
Graph	ADT: representations of graph – gra	aph traversals: BFS - DFS -	· shortest paths ·	– Minimum				
Spann	ng Trees: Prim's algorithm, Kruska	ıl's algorithm - – Shortest	path algorithms	s: Dijkstra's				
algorit	hm - Applications of Graphs.							
Sugge	sted Activities for practical:							
•	Implementation of graphs using BFS	and DFS						
•	Implementation of Prim's algorithm							
•	Implementation of Kruskal's algorith	ım						
•	Implementation of Dijkstra's algorith	ım						
Unit 05	SORTING, SEARCHING AND H	ASHING		9+6 Hours				
Sorting	g: Selection Sort - Bubble Sort – Inser	tion Sort - Merge Sort - Qu	iick Sort – Search	ning: Linear				
Search	- Binary Search – Hashing.							
Sugge	sted Activities for practical:							
•	Implementation of Sorting Techniqu	es						
•	Implementation of Searching Technic	ques						
•	Implementation of Hashing and Coll	lision Resolution Technique	5					
Theor	y: 45 Hrs Tutorial: F	Practical: 30 Hrs	<b>Total Hours: 75</b>	Hrs				
TEXT	BOOKS							
1.	Michael T. Goodrich, Roberto Tama Algorithms in Python", John Wiley	assia, and Michael H. Gold & Sons Inc., 2013.	wasser, "Data S	tructures &				
2.	2. Lee, Kent D., Hubbard, Steve, "Data Structures and Algorithms with Python" Springer Edition 2015.							
REFE	REFERENCES							
1.	https://infosysheadstart.onwingspan	n.com/						
2.	Rance D. Necaise, "Data Structures 2011.	and Algorithms Using Py	/thon", John Wi	ley & Sons,				

### **Course Outcomes**

After s	After successful completion of this course, the students should be able to							
CO1:	Acquire an adequate knowledge about PLC and working of its components.							
CO2:	Understanding the concepts of various instructions in PLC programming language.							
CO3:	Identify the sensors and actuators for the various Industrial applications.							
CO4:	Understand the communication requirements and programming for real time applications.							
CO5:	The need of SCADA, DCS and its advantages with PLC.							
Pre-rec	Pre-requisite							

1. Basic Electrical Engineering

2. Sensors, Transducers and Instrumentation

## CO/PO, PSO Mapping

### (3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

COs		Programme Outcomes (POs) and Programme Specific C												utcome (PSOs)			
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2			
CO1	3	3	2		3			2			2		3	2			
CO2	2	3	3		2		3		3			2	2	3			
CO3	3	2	3		3		2				2		3	3			
CO4	3	2	3		3					3			3	2			
CO5	3	3	2		2			2				2	3	3			
	Course Assessment methods																
					Ι	Direct							Indirect				
Interi	nal te	st I (8	3)			Onlin	e test	(6)									
Internal test II (8) Attendance (5)												1					

Unit 01: INTRODUCTION TO INDUSTRIAL AUTOMATION

9 Hours

Course end survey

Programmable Logic Controllers: Introduction, Relay based automation, Evolution of PLC's, Parts of PLC, Principles of operation, Advantages over relay logic, PLC sizes, PLC hardware components, I/O section, Discrete and Analog Module, CPU processor and memory module, Programming devices, PLC Programming Languages, Ladder diagram, Function Block Diagram, Latching relays, Converting simple relay ladder diagram in to PLC relay ladder diagram.

End semester Examination (60)

Internal test III (8)

Assignment/seminar/Quiz (5)

Timer	Jnit 02: PLC INSTRUCTIONS9 Hours											
	Instructions: O	n Delay, Off Delay A	nd Retentive Timers	, Up Counter,	Down Counter							
And	Up Down Cou	nters, Relay – Type	Instructions, Data	Manipulating	Program, Data							
Handl	ling											
Instru	ctions - Contro	ol Instruction, Math	n Instructions - Se	quencer And	Shift Register							
Instru	ctions.				1							
Unit 0	)3: PLC I/O DEV	ICES			9 Hours							
Input	Input devices: Manually Operated Switches – Mechanically Operated Switches, Analog and											
discre	te temperature	switches, proximity	switches, pressure	switches NO	and NC Push							
buttor	ns and interlock	ing concepts. Ouput	devices: Contactor f	or motors, Ste	pper and servo							
motor	s, starters, VFD,	hydraulic and pneum	natic cylinders, Analo	g valves.	0.TT							
Unit 04	E PLC COMMU	NICATION DEVICE	ES AND APPLICATI	ONS	9 Hours							
Netwo	orking of PLC, F	ieldbus, PROFI bus, a	and Mod bus, mechat	rolink, Contro	Net, DeviceNet							
and I	Profinet protoco	ols. Controlling a R	Robot with PLC, Co	onveyor belt	motor control,							
Auton	natic car washi	ng machine, PLC in	quality inspection,	Traffic light	control system,							
Applic	Application of PLC in power plants.											
Unit 0	5: SUPERVISO	KY CONTROL AND	DATA ACQUISITI	UN	9 Hours							
Introd	luction, Evolution	on of SCADA, Inter	rfacing PLC with S	CADA, featur	es of SCADA,							
SCAD	A Architecture,	Components of SCA	DA, Master Termina	l Unit, Remote	e terminal Unit,							
alarm	logging, Trend	on line, off line, HMI	and Introduction to D	DCS.								
	eory: 45 Hrs	Tutorial:	Tutorial: Practical: T		Total Hours: 45 Hrs							
Th	TEXT BOOKS											
TEXT	BOOKS			10001110	. 43 1115							
TEXT	<b>BOOKS</b> F.D. Petruzella	, Programmable Log	ic Controllers, Tata	Mc-Graw Hill	, Third edition,							
TEXT	BOOKS F.D. Petruzella, 2010	, Programmable Log	ic Controllers, Tata	Mc-Graw Hill	, Third edition,							
Th           TEXT           1.           2.	BOOKS F.D. Petruzella, 2010 Stuart A Boyer,	, Programmable Log "SCADA supervisor	ic Controllers, Tata y control and data acc	Mc-Graw Hill	, Third edition,							
ThTEXT1.2.REFEI	BOOKS F.D. Petruzella 2010 Stuart A Boyer, RENCES	, Programmable Log "SCADA supervisor	ic Controllers, Tata	Mc-Graw Hill	, Third edition,							
Th           TEXT           1.           2.           REFEI           1.	BOOKS F.D. Petruzella, 2010 Stuart A Boyer, RENCES K. L.S. Sharma	, Programmable Log "SCADA supervisor	ic Controllers, Tata y control and data acc strial Process Autom	Mc-Graw Hill quisition"2010 ation, Elsevie	, Third edition, r, Batten G. L.,							
ThTEXT1.2.REFEI1.	BOOKS F.D. Petruzella 2010 Stuart A Boyer, RENCES K. L.S. Sharma "Programmable	, Programmable Log "SCADA supervisor , Overview of Indus controllers", McGra	ic Controllers, Tata y control and data acc strial Process Autom aw Hill Inc., Second E	Mc-Graw Hill quisition"2010 ation, Elsevie dition, 2011.	, Third edition, r, Batten G. L.,							
Ih         TEXT         1.         2.         REFEI         1.         2.	BOOKS F.D. Petruzella, 2010 Stuart A Boyer, RENCES K. L.S. Sharma "Programmable Hughes .T, "Pro	, Programmable Log "SCADA supervisor , Overview of Indus e Controllers", McGra	ic Controllers, Tata y control and data acc strial Process Autom aw Hill Inc., Second E ontrollers", ISA Press,	Mc-Graw Hill quisition"2010 ation, Elsevie dition, 2011.	, Third edition, r, Batten G. L.,							
Th           TEXT           1.           2.           REFEI           1.           2.           3.	BOOKS F.D. Petruzella, 2010 Stuart A Boyer, RENCES K. L.S. Sharma "Programmable Hughes .T, "Pro Mdhuchhanda	, Programmable Log "SCADA supervisor , Overview of Indus e Controllers", McGra ogrammable Logic Co Mitra, Samarjit Ser	ic Controllers, Tata y control and data acc strial Process Autom aw Hill Inc., Second E ontrollers", ISA Press, n Gupta, "Programm	Mc-Graw Hill quisition"2010 ation, Elsevie dition, 2011. 1989. nable Logic (	, Third edition, r, Batten G. L., Controllers and							
Th           TEXT           1.           2.           REFEI           1.           2.           3.	BOOKS F.D. Petruzella, 2010 Stuart A Boyer, RENCES K. L.S. Sharma "Programmable Hughes .T, "Pro Mdhuchhanda Industrial Au	, Programmable Log "SCADA supervisor , Overview of Indus e Controllers", McGra ogrammable Logic Co Mitra, Samarjit Ser tomation, An Int	ic Controllers, Tata y control and data acc strial Process Autom aw Hill Inc., Second E ontrollers", ISA Press, n Gupta, "Programm troduction" Penran	Mc-Graw Hill quisition"2010 ation, Elsevie dition, 2011. 1989. nable Logic C n Internation	, Third edition, r, Batten G. L., Controllers and al Publishing							
ThTEXT1.	BOOKS F.D. Petruzella	, Programmable Log	ic Controllers, Tata	Mc-Graw Hill	, Third edition,							

L	Т	Р	С
3	0	0	3

### **Course Outline :**

Manufacturing industry contributes a major share in the GDP of our country. Application of automated systems is certainly improving the productivity of the manufacturing industry. In view of this, a course on "Automation in Manufacturing" is designed with the primary focus on the design and development of automated systems in the manufacturing. Initially the course introduces various automated systems being used in the manufacturing industry. Then the building blocks of a typical automated system are described. It presents a study on the principle of operation and construction details of sensors/transducers, actuators, drives and mechanisms, hydraulic and pneumatic systems. It also covers up the microprocessor technology, programming and CNC technology. The contents are lucidly presented with real-life examples. Case studies based on manufacturing industry applications are presented.

### Intended audience :

UG, PG students of Mechanical, Production, Industrial Engineering, Mechatronics Engineering. Practicing engineers.

Pre requisites: Knowledge of basic electronics and electrical engineering.

### **Course layout:**

**Week 1:** Introduction: Importance of automation in the manufacturing industry. Use of mechatronics. Systems required.

**Week 2:** Design of an automated system: Building blocks of an automated system, working principle and examples.

**Week 3:** Fabrication: Fabrication or selection of various components of an automated system. Specifications of various elements. Use of design data books and catalogues.

**Week 4:** Sensors: study of various sensors required in a typical automated system for manufacturing. Construction and principle of operation of sensors

**Week 5:** Microprocessor Technology: signal conditioning and data acquisition, use of microprocessor or micro controllers. Configurations. Working.

**Week 6:** Drives: electrical drives – types, selection criteria, construction and operating principle.

**Week 7:** Mechanisms: Ball screws, linear motion bearings, cams, systems controlled by camshafts.

**Week 8:** Mechanisms: Electronic cams, indexing mechanisms, tool magazines, and transfer systems.

**Week 9:** Hydraulic systems: hydraulic power pack, pumps, valves.

Week 10: Hydraulic systems: designing of hydraulic circuits.

**Week 11:** Pneumatic systems: configurations, compressors, valves, distribution and conditioning.

**Week 12:** CNC technology: basic elements, interpolators and programming

Theory: 45 Hrs	Tutorial:	Practical:	Total Hours: 45 Hrs

TEXT	BOOKS
1.	HMT Ltd. Mechatronics, Tata McGraw-Hill, New Delhi, 1988.
2.	Boltan, W., Mechatronics: electronic control systems in mechanical and electrical
	engineering, Longman, Singapore,1999.
REFE	RENCES
1.	Regtien, P. P. L., Sensors for mechatronics, Elesevier, USA,2012
2.	Tonshoff, H.K. and I. Inasaki, Sensors in manufacturing, Wiley-VCH, 2001.
3	Gaonkar, R. S., Microprocessor architecture, programming, and applications with the
0.	8085, Penram International Publishing (India), Delhi, 2000
4	Bradley, D. A., Dawson D., Burd, N. C. and Loader A. J., Mechatronics: Electronics in
т.	products and processes, CRC Press, Florida, USA, 2010.
5.	Rothbart, H. A., CAM Design Handbook, McGraw-Hill, 2004.
6.	Norton, R. L., Cam Design and Manufacturing Handbook, Industrial press Inc, 2002.

### **Course Outcomes**

After successful completion of this course, the students should be able to									
CO1:	Perceive working knowledge in Computer Aided Design methods and procedures.								
CO2:	Construct solid modelling using 3D modelling standard software.								

**CO3:** Interpret simple CNC programs.

## **Pre-requisite:**

**Engineering Graphics** 

# CO/PO, PSO Mapping

	(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak													
COs		Programme Outcomes (POs) and Programme Specific Outcome (PSOs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO12	PSO1	PSO2	
CO1	3	3	3		3		2					2	2	
CO2	3	3	3		3		2					2	2	
CO3	3	3	3		3		3					3	3	

Course Assessment methods										
	Direct	Indirect								
CIE Test-I (20)	Quiz-II (5)	Course end survey								
Quiz-I (5)	Real Time Problem Solving (10)									
CIE Test-II (20)	End semester Examination (40)									
List of Experiments										

1.	. Drawing Standards Code of practice for Engineering Drawing, BIS specifications.
	Drawing, Editing, Dimensioning and Plotting Commands-Layering concepts-Limits,
	Fits and Tolerances.

- 2. Orthographic views of standard machine components: Brackets, V Blocks, Stop Block, Screw threads and Threaded fasteners.
- 3. [A] Solid modelling & assembly
  - [B] Surface modelling & assembly & BOM.
- 4. CNC lathe introduction to basic programming & operations.
- 5. Part Programming of facing operation.
- 6. Part Programming of turning operation.
- 7. Part Programming of thread cutting operation. (Internal/External)
- 8. Part Programming of Grooving operation.
- 9. Part Programming of Drilling and Boring operation. (Internal/External)
- 10. Part programming using Canned Cycle operations.

Total Hours: 45 Hrs

U19MC506			INI	RIAL	AUTO		L	J	-	Р	C				
		2500			L	ABOI	RATO	RY			0	C	)	3	1.5
Cours	se O	utcome	es												
After successful completion of this course, the students should be able to															
CO1:	D	evelop	the P	LC pro	gram	for th	e impl	ementa	ation of	flogic	gates				
CO2:	D	evelop	the P	LC pro	gram	for co	ntrolli	ng the	param	eters li	ke Pre	ssure	e, Le	evel and	Flow
CO3:	D	esign t	he rea	al time	PLC p	rogra	m for	various	applic	cations	like b	ottle	fillir	ng, cylin	der
	actuation and elevator control														
Pre-requisite															
1.Electronic Devices and circuits laboratory															
2.Hydraulics and pneumatics laboratory															
						CO	/PO, P	SO Ma	pping						
	(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak														
Programme Outcomes (POs) and Programme Specific Outcome (PSOs)															
03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO1	1 PO	12	PSO1	PSO2
CO1	3	3	2	2			2			2				3	2
CO2	3	2	3	2			2			2				3	2
Course Assessment methods															
Course Assessment methods															
	oot I	(20)						(5)					Car	inund	
	est-1	(20)				ע ק	2012-11	() no Pro	blom S	oluina	(10)		CO	urse end	. survey
Quiz-	I (0)	I(20)					and cor	ne rio	Evomir	orving	(10)				
	est-1	1 (20)					nu sei	nester	Examin	lation	(40)				
List 0		berime		monst		s:	ID are a		4.0						
1. 2	Wri	te lade	ler log	ic prog	ram f	or $NA$		n OK ga	R gato						
2.	Wri	te lado	ler log	ric prog	ram f	or $NC$	$\frac{1}{2}$ T and	FX-OF	R gale. 2 oate						
4.	Aut	omate	the le	vel and	flow	contr	$\frac{1}{1}$ ol usir	g PLC	c gute.						
5.	Cor	nduct t	he ten	peratu	ire cor	trol u	ising P	LC							
6.	Cor	nduct t	he pre	essure a	nd flo	w cor	ntrol u	sing PL	.C.						
7.	Cor	nduct t	he cor	ntrol of	elevat	or usi	ng PL	C							
8.	Stu	dy the	Bottle	filling	proces	ss usi	ng PLC	2							
9.	Cor	nduct t	he cyli	inder s	equen	cing u	ising s	imple p	oneum	atic diı	ect co	ntrol	valv	ve.	
10.	Wri	ite lado	ler log	;ic prog	gram f	or the	traffic	light c	ontroll	er usir	g PLC				
11.	Cor	nduct t	he spe	cial I/C	) for s	peed o	contro	l of DC	motor	using	PLC.				
12.	Pro	gramm	ning ir	۱ HMI a	and SC	CADA									
												Т	otal	Hours:	45 Hrs

I I1	OMC	507			M	INI PI	SUIEC	ד_ד			L	Т	Р	C
		507			101.	119111	NOJEC	-1-1			0	0	2	1
Cours	e Out	come	s											
After successful completion of this course, the students should be able to														
COl·	Fra	me a i	real w	orld p	robler	n, idei	ntify tl	ne requ	iremen	it and d	eveloj	p the d	esign sol [.]	utions.
	Exp	press t	he tec	hnical	ideas	, strate	egies a	nd me	thodolo	ogies.				
	Ap	ply th	e new	tools,	algor	ithms,	techn	iques t	hat con	tribute	to obt	ain the	solution	of the
<b>CO2:</b> project. Examine and validate through conformance of									of the d	levelo	ped pro	ototype a	nd	
	analysis the cost effectiveness.													
CO3:	<b>CO3:</b> Prepare report and present the oral demonstrations.													
CO/PO, PSO Mapping														
		(3/2	2/1 ind	licates	stren	gth of	corre	lation)	3-Stror	ng, 2-M	ediun	n, 1-We	ak	
COs	Programme Outcomes (POs) and Programme Specific Outcome (PSOs)													
<u>CO1</u>	2 PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10		PO12	2	PSO2
CO1	3	3	3	2	1	2	2	2	2	2	1	1	3	2
$CO_2$	3	3 2	3 2	3 2	3 2	2	2	2	2	2	5 1	1	3	2
05	5	2	2	2		$\sim$	Asse	sement	metho	de	T	1	5	2
						irect	. 11990	551110111	memo	<b>u</b> 5			Indirec	·†
Revie	w-I(1	0 mar	·ks)		E	nd ser	nester	Exami	nation	(40 mai	rks)	Con	irse end s	SUITVEV
Revie	w- II (	10 ma	rks)			na sei	nebter	LAUIII	ination	(10 1110	(Ro)	000		, aivey
Revie	w- III	(10  m)	arks)											
Projec	ct & re	port (	30 ma	rks)										
1.	The	studer	nts for	med i	nto a	team	of con	venien	t group	os of no	ot mor	e than	4 memb	ers on a
	proje	ect are	not al	lowed	l to ch	ange t	heir te	eam me	mbers.					
2.	Ever	y proj	ect te	am sh	ould	report	t to th	eir fac	ulty gu	uide foi	discu	ission	from the	e day of
	begir	ning	of 5 th s	semest	ter.									
3.	The	group	has t	o anal	lyze tl	he sele	ected ]	probler	n addr	essed i	n thei	r proje	ct work	to draw
	solut	ion.												
4.	A pr	oject r	eport	has to	be su	bmitte	ed by e	ach stu	ident g	roup at	the er	nd of th	ne 5 th sem	lester.
5.	Thre	e revi	ews ha	ave to	be co	nducte	ed by a	a team	of facu	lty (mi	nimun	n of 1 a	ınd maxi	mum of
	2) alo	ong w	ith the	eir facı	alty g	uide a	s a me	ember o	of facul	ty team	(for r	nonito	ring the p	orogress
	of pr	oject p	olanni	ng and	l impl	ement	tation)	•						

Total Hours: 30 Hrs

r		Т	т	D	0	Manka
Semester V	U19GE501 : SOFT SKILLS AND APTITUDE - III		1	2		100
Course Outcomer					····	100
Course Outcomes	me the student will be able to				*	
At the end of the cou		. 1	1			
1. Demonstrate capa using hands-on an	d/or case-study approaches	ated	sele	ectio	on p	rocesses
2. Solve problems of	f advanced levels than those in SSA-II in specified areas of	qua	ntitat	ive	aptit	ude and
logical reasoning	and score /0-/5% marks in company-specific internal tests	orh (				d calaat
5. Display effective	anguage knowledge to construct sentences with subject v	the	blan	line.	in th	la select
nassages with suit	able forms of words and their synonyms	uic	Ulan	N.J	ni ti	ic given
pussuges with suit	Demonstrating soft-skill capabilities with reference to	the f	olloy	vin	g tor	pics:
	a Career planning				- r	
50	a. Calcel plaining					
	o. Resulte writing					
1 SOFT SKILLS	d Teamwark					
1.SOFT SKILLS	d. Teamwork					
8 8	e. Leadership skills				84 8	
	I. Interview skills					
	g. Mock interviews					
	h. Mock GDs	H)				
	Solving problems with reference to the following topics	S:	Ninta.			
1	a. Geometry: 2D, 3D, Coordinate Geometry, and Heigh	Circ	Jista	nce	rona	omonto
	and Derangements	Circ	ulai	AI.	ang	ements
2. QUANTITATIVE	c. <b>Probability:</b> Addition & Multiplication Theorems. Co	ondit	ional	Pre	obab	ility and
APTITUDE	Bayes Theorem.					
AND	d. Statistics : Mean Median, Mode, Range and Standar	d De	viati	on.		
LOGICAL	e. Interest Calculation :Simple Interest and Compound	Inte	rest			
REASONING	f. Crypto arithmetic: Addition and Multiplication base	d pro	blen	1.		
	g. Logical Reasoning Blood Relations, Directions Te	st, S	enes	, 0	dd n	nan out,
	h Statement & Assumptions Statements & Arguments	Juip Infer		asc	ning	<b>,.</b>
	i Company Specific Pattern : Infosys and TCS company	inici iv sn	ecifi	c ni	roble	ms
		-J -P		• p.		
	Demonstrating English language skills with reference	to th	e fol	IOW	ing	topics:
	a. Subject vero agreement	an c	ontor			
2 VEDDAI	b. Selecting the best alternative for the stated parts of give	CII S	cinici	ICCS	•	
J. VERBAL	d Contextual synonyms					
AFILUDE	e Sentence fillers					
	f Writing a story for a given picture					
	g. Company specific aptitude questions					

0 Dr.S.Anita

Head/Training

Department of Placement Training Sona College of Technology, Salem-636 005.

# Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VI Regulations 2019 Branch: Mechatronics Engineering

S No	Course Code		Course Title	Locturo	Tutorial	Dractical	Credit	Total
5. 110	Course Coue		Course ritte	Lecture	1 0101 181	Tactical	Creuit	<b>Contact Hours</b>
			Theory		-		-	
1	U19MC601	Artificial Intel	ligence and Machine Learning	3	0	0	3	45
2	U19MC602	Image Process	ing and Computer Vision	3	0	0	3	45
3	U19MC603	Robotics		3	0	0	3	45
4	U19MC904	Professional	Electric and Hybrid Vehicles	2	0	0	2	15
4	U19MC905	Elective:	Digital Manufacturing	3	0	0	3	43
5	U19MC906	Professional	Drone Technology	2	0	0	2	15
5	U19MC907	Elective:	Design Thinking and Product Innovation	3	0	0	5	40
	U19CE1002	Open	Municipal Solid Waste Management					
	U19CE1003	Elective:	Energy Efficiency and Green Building					
	U19EC1006		Mobile Technology and its Applications					
	U19EE1002		Energy Conservation and Management					
	U10EE1002		Innovation, IPR and Entrepreneurship					
6	019221003		Development	3	0	0	3	45
	U19EE1004		Renewable Energy Systems					
	U19FT1001		Fundamentals of Fashion Design					
	L10IT1001		Problem Solving Techniques using Java					
	019111001		Programming					
	U19ME1004		Renewable Energy Sources					

	Practical										
7	U19MC604	Image Processing Laboratory	0	0	2	1	30				
8	U19MC605	3D Modelling and Analysis laboratory	0	0	2	1	30				
9	U19GE601	Soft Skill and Aptitude – IV	0	0	2	1	30				
10	U19MC606	Mini Project – II	0	0	2	1	30				
				Te	otal Credits	22					

# Approved By

Chairperson, Mechatronics Engineering BoS	Member Secretary, Academic Council	Chairperson, Academic Council & Principal
Dr.P.Suresh	Dr.R.Shivakumar	Dr.S.R.R.Senthil Kumar

# Copy to:-

HOD/ Mechatronics Engineering, Sixth Semester BE MCT Students and Staff, COE

	U19MC601		AR	TIFIC	IAL IN	NTELL	IGEN	CE AN	JD	L		Т	Р	С	
	19M	601			MA	CHIN	IE LEA	RNIN	G		3		0	0	3
Cour	se Ot	tcome	<b>s</b>												
After	succ	essful o	comple	etion o	f this c	ourse,	, the st	udents	s shou	ld be at	ole to				
CO	<b>1:</b> Io	lentify	suitabl	le Artif	ficial Ir	ntellige	ent age	ent for	the rea	al time p	roblem	l.			
CO2: Solve real time design problems using heuristic based algorithms.															
CO3: Construct knowledge base through various inference rules.															
<b>CO4:</b> Outline the machine learning concepts.															
CO	<b>CO5:</b> Apply supervised learning algorithms to various classification problems.														
Pre-r	equis	ite													
	1.	Proba	bility a	and sta	tistics				<u> </u>						
			(3/2/1	indica	ates str	ength	O/PO, of cori	PSO N elatior	/ <b>Iapp1</b> 1) 3-Sti	<b>ng</b> rong, 2-1	Mediur	n, 1-We	eak		
60			Pro	gramn	ne Out	comes	(POs)	and P	rogran	nme Spe	ecific O	utcome	e (PSO	s)	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSG	D1	PSO2
CO1	3	3	2		2	2						2	3		2
CO2	3	3	2		2	2	2					2	3		2
CO3	3	3	2		2	2	2					2	3		2
CO4	3	3	3		2		2					2	3		3
CO5	3	3	3		2		3					2	3		3
			1			Cour	se Ass	essme	nt me	thods					
					Di	rect							In	direct	
Intern	nal te	st I (8)			On	ine tes	st (6)								
Intern	nal te	st II (8)			Att	endan	ce (5)					C	ourse	end si	urvey
Interi	nal te	st III (8)	)		Enc	l Seme	ester Ex	kamina	ition (6	50)					5
Assig	nmei	nt/Semi	nar/Qi	112 (5)										r	
Unit (	)1: IN	TROD	UCTIO	ON OF	AI									9 Ho	ours
Foun	datio	ns of A	I – His	story o	f AI –	Appli	cations	– Cor	npone	nts of A	I – Inte	elligent	agent	s: Te	rminology,
Struc	ture,	Attribu	ites – 7	Types of	of ager	nts – P	roblen	n solvi	ng – F	Problem	formu	lation:	Examj	ples –	· Searching
techniques: Types - Uniformed search strategies: Breadth first search , Depth first search - Iterative															
deepening – Bi-directional search – Comparing search strategies															
Unit 02: PROBLEM SOLVING STRATEGIES9 Hours															
Informed/Heuristic search: Hill climbing search, A* search, Branch and Bound search – Adversarial															
searc	search: Optimal strategies, Minimax algorithm, Alpha-Beta pruning – Constrained satisfaction problems:														
Cryp	Crypto arithmetic problem														

Unit 0	Unit 03: KNOWLEDGE REPRESENTATION AND REASONING 9 Hours										
Agen	t – knowledge repres	sentation issues –	Predicate logic: Representat	ion, Unification a	nd resolution –						
Repre	sentation knowledge	e using rules: Pro	positional logic – First order	logic – Inference	– Forward and						
backward chaining											
Unit 0	4: MACHINE LEAR	NING			9 Hours						
T		D .	T (I : C :	1 TT • 1							
Introduction – Classification – Regression – Types of Learning: Supervised, Unsupervised, Reinforcement											
learni	ng – Machine lear	ming application	s – Dimensionality reducti	on: Subset sele	ction, Principle						
Comp	oonent Analysis (PCA	A), Linear discrim	inate analysis – Clustering: It	erative distance b	ased clustering,						
k-Mea	ans clustering										
Unit 0	5: CLASSIFICATIO	N ALGORITHM	S		9 Hours						
Decis	ion Tree: Introductio	on, Basic learning	g tree learning algorithm, s	teps, issues in c	lecision trees –						
Supp	ort Voctor Machina	(SVM) = Baxosia	n classification: Naivo Bavo	r classifior K No	arost Noighbor						
Supp		(5 v ivi) = Dayesia	Il classification. Naive Daye	5 Classifier, K-ING	calest Neighbol						
(KNN	1)										
]	Theory: 45 Hrs	Tutorial:	Practical:	Total Hou	rs: 45 Hrs						
TEXT	BOOKS										
1.	Nilakshi Jain, "Arti 2019	ficial Intelligence	- Making a system intelligent	", First Edition, V	Viley Publisher,						
2	Anuradha Sriniyasa	araghayan Vincy	Ioseph "Machine learning"	First Edition Wil	ev publisher						
	2019.		josephi) maenine rearrang /		ey publisher,						
3.	Rajiv Chopra, "Arti	ficial Intelligence'	', Second Edition ,S.Chand pu	ıblisher, 2016							
			-								
REFE	RENCES										
1. Elaine Rich, Kevin Knight and S B Nair," Artificial Intelligence", Third Edition, Tata McGraw Hill,											
2019											
2.	2. Masashi Sugiyama, Introduction to Statistical Machine Learning, Morgan Kaufmann Publishers,										
	2016.										
3.	David Pool and Ala	n Mackworth, "A	rtificial Intelligence: Foundat	ions of Computat	tional agents",						
	Cambridge University, 2011.										

U	19M	C602			IMA	GE PR	OCESS	SING A	ND		L	Т	Р	C
					C	COMPL	JTER V	ISION			3	0	0	3
Cours	e Ou	tcomes												
After	succe	essful c	omple	tion of	this co	ourse, tl	he stud	ents sh	ould be	able to				
CO1:	F	amiliar	ize the	funda	mental	concep	ots of di	gital im	age pro	ocessing.				
CO2:	CO2: Apply Image enhancement techniques in spatial domain.													
CO3:	<b>CO3:</b> Identify the features and region of interest for a given image using segmentation approaches.													
CO4:	CO4: Implement different compression techniques.													
CO5:	D	Develop	algori	thms f	or com	puter vi	ision pr	oblems	with fo	ocus on R	obotics.			
Pre-re	quisi	ite												
1.	Linea	ır algeb	ra and	calcul	us									
			(2/2/1	india	too atu	CO on othe o	/PO, PS	50 Map	ping	0 Madi	1 1 1	lock		
	(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak													
60							(1 O 3) u						<i>,</i>	1
COs	PO	1	PO	PO	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
		2	3	4										
CO1	2	3	2		3			2			3		3	2
CO2	2	3	3		2		3		3			2	3	2
CO3	3	3	2		3		2				2	2	3	2
CO4	2	2	3		2					3		2	3	2
CO5	3	3	2		2			2				2	3	2
					<b>D'</b>	Cours	e Asses	sment	nethod	S		<b>T</b>	1. 1	
Intorn	al too	+ T (Q)			Dire	ect Oplin	no tost (	6)				Inc	lirect	
Intern	al tes	at II (8)				Atter	ie iesi (i idance i	(5)						
Intern	al tes	st III (8)				End S	Semeste	er Exam	ination	(60)	(	Course e	end surve	ey
Assignment/Seminar/Quiz (5)														
Unit 01: IMAGE PROCESSING FUNDAMENTALS 9 Hours														
Funda	amen	tal Step	s in Di	gital I	mage P	rocessi	ng – Ele	ements	of Visu	al Percer	otion – S	ome Ba	sic Relat	ionship
Betwe	en Pi	xels – C	Connec	tivity -	- Distar	nce Mea	asure –	Brightn	ess – C	ontrast –	Hue – S	Saturati	on – Mao	ch Band
Effect	Effect – Types of Image – Image sampling – Quantization – False Contouring – Colour Image													
Funda	imen	tais KG	Fundamentals RGB – HSI Models – Conversion from RGB to HSI.											

Unit 02:	Unit 02: IMAGE ENHANCEMENT9 Hours										
Spatial	domain filtering: Image negative, Contrast stretching, Gray level slicing – Histogram e	qualization –									
Smooth	ing filters – Sharpening filters – Maximum filter – Minimum filter – Median filter	– Bit Plane									
Slicing	– Frequency domain filtering: Low-pass filter, High-pass filter, Butterworth High-pass	s filter, Low-									
pass and High-pass Gaussian filter											
Unit 03:	IMAGE SEGMENTATION	9 Hours									
Image s	segmentation: Point, line and edge detection – Basics of intensity thresholding – R	legion based									
segmen	tation : Region growing, Region splitting and merging - Thresholding - Stan	dard Binary									
Morpho	ological Operations – Dilation and Erosion based Operations										
Unit 04	IMAGE COMPRESSION	9 Hours									
Image	Compression – Lossless Compression – Huffman Coding –Arithmetic Coding – LZ	W Coding –									
Lossy (	Compression – Compression Standards: JPEG Image Compression Standards and M	APEG Video									
Compre	ession Standards – H.244 Compression Standards										
IInit 05.		9 Hours									
Feature	extraction: Markov Random Field Matrix, Grav Level Co – occurrence Matrix, Grav I	evel Weight									
Matrix	Multi Resolution Combined Statistical and Spatial Enguron as method. Character P.	accomition									
	Multi Resolution Combined Statistical and Spatial Frequency method, Character R	ecognition -									
Zoning	approaches – Computer vision for Autonomous Robots										
Theory	: 45 Hrs Tutorial: Practical: Total Hours: 45 H	Irs									
TEXT B	OOKS										
1.	Jayaraman S., Esakkirajan and Verrakumar, "Digital Image Processing", TMH New edition, 2020.	v Delhi, 2nd									
2.	Anil K.Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, 2004.										
REFER	ENCES										
	Richard Szeliski, "Computer Vision Algorithms and Applications", Springer Ver	lag London									
1.	1. Limited, 2011.										
2.	2. Sabeenian R.S., "Digital Image Processing", Sonaversity publication, Second Edition, 2010.										
2	Annadurai S., R. Shanmugalakshmi, "Fundamentals of Digital Image Processing", Pearson										
3.	Education India, 2007.										
4.	Sridhar.S, "Digital Image Processing", Oxford University Press, First Edition, 2011.										
5.	Rafael C.Gonzalex, Richard E.Woods, "Digital Image Processing", Pearson Education, Forth Edition, 2018.										

U19MC603 ROBOTICS							CS				Т	P	C	
Course	Out	comes									3	U	0	3
After s	ucces	sful co	mple	tion of	this co	urse, th	e stude	nts sho	uld be	able to				
CO1:	U	ndersta	and tł	ne fund	amenta	als of Ro	botics.							
CO2:	CO2: Illustrate the kinematic relationships in robot motion.													
CO3:	CO3: Compute Lagrange formulation of Robot dynamics													
CO4:	L	earn th	e type	es of gri	ppers a	and its f	unctior	ns.						
CO5:	U	ndersta	and th	ne econo	omic ar	nd socia	l implic	cations	of Robc	otics.				
Pre-rec	quisit	e :												
1. 2.	- Theory of Machines Engineering Mechanics													
						CO	/PO, PS	O Map	ping					
	(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak													
60		Programme Outcomes (POs) and Programme Specific Outcome (PSOs)												
COs	PO1 PO PC		PO	PO	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
		2	3	4										
CO1	3	2	2		3			2		2			3	2
CO2	3	3	3		3					2			3	2
CO3	3	3	3		3					2			3	2
CO4	3	2	3		2					3		2	3	2
CO5	2	3	3	2	2			2	3	2	2	3	3	2
				•				•						l
					Dir	Course	Assess	sment n	nethod	s		Ind	liract	
Interna	al test	I (8)				online te	est (6)					1110	illect	
Interna	al test	II (8)			А	ttendar	nce (5)					7	1	
Interna	ıl test	III (8)			E	nd sem	ester Ex	aminat	ion (60)	)		Lourse e	end surv	ey
Assign	ment	/semina	ar/Qu	iz (5)										
Unit 01: FUNDAMENTALS OF ROBOTICS       9 Hours														
Introduction – Automation and Robotics – History of Robotics – Robot anatomy - Major components of a														
robot – Robot subsystems: Motion subsystem, Recognition subsystem, Control subsystem – Classification of														
robots:	Clas	sificatio	on by	coordi	nate sy	ystem, (	Classifie	cation b	oy cont	rol meth	od, Cla	ssificati	on by ac	ctuation
method – Joint notation scheme														

Unit 02:	ROBOT MOTION	ANALYSIS			9 Hours					
Links ar	nd Joints: Types of	Joints – Kinemat	ic chain – Degree of freedo	m – Robot kinemat	ics –Position					
represen	tation - Forward t	ransformation of 2	2 DOF arm – Reverse transfo	rmation of 2 DOF a	rm – Adding					
orientation – Homogeneous transformations – D-H conventions										
Unit 03: I	ROBOT DYNAMI	CS			9 Hours					
Introduc	tion – Manipulator	path control - Stat	ic analysis – Compensating fo	or gravity – Robot ar	m dynamics:					
Joint vel	ocities, Kinetic ener	gy, Potential energy	gy – Lagrange formulation of	Robot dynamics - C	Configuration					
of a Robo	ot controller									
Unit 04: I	ROBOT END EFFE	CTORS			9 Hours					
Introduc	tion – Types of end	d effectors – Mech	nanical grippers: Types of gri	pper mechanisms ,	Gripper force					
analysis	vsis – Vacuum cups – Magnetic grippers – Adhesive grippers – Tools as end effectors – End effector									
interface	– Remote Center C	Compliance – Cons	iderations in gripper selection	n and design						
Unit 05: I	ECONOMIC ANA	LYSIS AND SOCI	AL IMPLICATIONS		9 Hours					
Type of	Robot Installation -	- Cost data requir	ed for analysis – Methods of	economic analysis -	- Subsequent					
use of th	e robot – Difference	es in production ra	ate – Factors more difficult to	quantify – Robot pr	oject analysis					
form – Se	ociological consequ	ences of robot								
Theory:	45 Hrs	Tutorial:	Practical:	Total Hours: 45 I	Irs					
TEXT BO	OOKS									
	M.P.Groover,M.W	/eiss,R.N. Nagal,N	J.G.Odrey, "Industrial Robot	ics - Technology, p	rogramming					
1.	and Applications"	Tata McGraw-Hil	l Publication, 2012.							
REFERE	NCES									
1.	Richard D.Klafter, "Robotics Engineering" PHI Learning Private Limited, 2009.									
2.	Ganesh S.Hedge, "A text book in Industrial Robotics", Laxmi Publications, 2006.									
3.	S K Saha, "Introduction to Robotics", Tata McGraw-Hill Publication,2012.									
Λ	Sathya Ranjan De	b, "Robotics Techr	nology & flexible Automation	n" Second edition, Ta	ata McGraw-					
4.	Hill Publication, 2	.009.								

U	19M	C904			P	ofessi	onal E	lective	e:		L		Т	Р	C
				ELE	CTRIC	AND	) HYB	RID V	EHIC	LES	3		0	0	3
Cour	se Ou	tcomes	5												
After	succe	essful c	omple	tion o	f this c	ourse,	the st	udents	s shou	ld be at	ole to				
CO1:	С	lassify	the pre	ecise ba	attery (	types f	or elec	tric ve	hicles.						
CO2: Discuss the working concepts of various motors used in electric vehicles.															
<b>CO3:</b> Choose the proper control methods for electric vehicles.															
CO4:	CO4: Identify the different types of hybrid vehicles for commercial applications.														
CO5:	CO5: Examine the performance characteristics of fuel cell.														
Pre-requisite															
	1.	Electric	al Driv	ves and	d Cont	rol									
						C	O/PO,	PSO N	Ларрі	ng					
			(3/2/1	indica	tes str	ength	of corr	elation	n) 3-St	rong, 2-1	Mediur	n, 1-We	eak		
COs	DOI	DOD	Pro	gramn	ne Out	comes	(POs)	and P	rogran	nme Spe	ecific O	utcome	e (PSO	9s)	DCOD
CO1	2	PO2	PO3	PO4	PO5	PO6	PO/	PO8	P09	POI0	POIT	2	PS	,	PSO2
CO1	3	3	2			2	3					2		> 2	2
$CO_2$	3	3	2			2	3					2		, ,	3
CO4	3	3	2			2	3					3	3	3	3
CO5	3	3	2			2	3					3	3	3	3
						Cour	se Ass	essme	nt me	thods					
					Di	rect							In	direct	
Interr	nal tes	st I (8)			Onl	ine tes	t (6)								
Interr	nal tes	st II (8)			Atte	endanc	e (5)					C			
Interr	nal tes	st III (8)			End	Seme	ster Ex	amina	tion (6	50)		C	Jurse	ena si	urvey
Assig	nmer	nt/Semiı	nar/Qu	uiz (5)											
Unit	01: IN	TROD	UCTI	ON TO	) ELEC	CTRIC	VEHI	CLES						9 Ho	ours
Electi	ric ve	hicle: N	Jeed, 🛛	Гуреs,	Cost a	and Er	nissior	ns, Enc	d of li	fe – E	lectric	vehicle	techr	ology	: Layouts,
Cable	es, Co	mpone	nts, C	ontrol	s – Ba	tteries	: Over	view,	Types	s, Battei	y plug	-in an	d life,	Ultra	a-capacitor
charg	ing -	• Metho	ds and	l stand	ards –	Alterr	nate ch	arging	sourc	es : Wir	eless ar	nd Sola	r		-
Unit	0 <b>2:</b> EI	ECTRI	C VEI	HICLE	MOT	ORS								9 Ho	ours
Moto	rs (D0	C, BLDO	C): Typ	pes, Pr	inciple	, Cons	structio	on, Cor	ntrol –	Electri	c Drive	Trains	(EDT	) – Se	ries HEDT
(Elect	rical	Coupli	ng): P	ower	rating	design	n, Pea	k Pow	ver So	urce (Pl	PS) –	Paralle	el HE	DT (N	Mechanical
Coup	ling)	– Torq	ue co	upling	and s	speed	coupli	ng - S	witch	ed Relu	ctance	Motors	s (SRI	M) dr	ives: Basic
structure, Drive convertor, Design															
Unit 03: CONTROL METHODS IN ELECTRIC VEHICLES       9 Hours															
Senso	ors: A	utonom	ious E'	V cars,	Self-D	rive C	ars –	Sensor	r less c	control n	nethods	s: Phase	e flux	linkag	ge method,
Phase inductance method, Modulated signal injection, Mutually induced voltage, Observer method -															
Safety: Risks and Guidance, Precautions, High voltage safety, Hazard management															

Unit (	Unit 04: HYBRID VEHICLES9 Hours									
Hybri	d electric vehicles cl	assification: Micr	o, Mild, Full – EV Layout a	and Architecture: Series, Parallel						
and S	and Series-Parallel, Hybrid-Propulsion systems and components - Regenerative braking - Economy,									
Vibra	tion and Noise reduc	tion – Hybrid ele	ectric vehicles system: Analysi	s and its types, Controls						
Unit (	)5: FUEL CELLS FO	R ELECTRIC VE	HICLES	9 Hours						
Fuel o	cell : Introduction, Te	chnologies and T	ypes, Obstacles, Operation pr	inciples, Potential and I-V curve,						
Fuel a	and oxidation consur	nption – Fuel cel	l characteristics: Efficiency, D	ourability, Specific power, Power						
desig	n of fuel cell vehicle a	and freeze capacit	y – Lifetime cost of fuel cell v	ehicle						
]	Theory: 45 Hrs	Tutorial:	Practical:	Total Hours: 45 Hrs						
TEXT	BOOKS									
1.	Wei Liu ,"Hybrid I	Electric Vehicle Sy	ystem Modeling and Control	", Second Edition, John Wiley &						
	Sons, Inc., 2017.									
2.	Tom Denton,"Elect	ric and Hybrid Ve	ehicles",CRC Press, Second Ec	lition, 2020.						
REFE	RENCES									
1.	Gianfranco Pistoia	,"Electric and	Hybrid Vehicles Power S	ources, Models, Sustainability,						
	Infrastructure and t	he Market", Elsev	vier Publications, 2010.							
2.	Mehrdad Ehsani,Y	imin Gao, Stefan	o Longo and Kambiz Ebra	himi ,"Modern Electric, Hybrid						
	Electric, and Fuel Cell Vehicles", Third Edition, CRC Press,2018.									
3.	Simona ,"Hybrid El	ectric Vehicles", I	First Edition, Springer India , 2	2019						
4.	Teresa Donateo,"H	ybrid Electric Veh	icles",First Edition, Intech O	pen Limited ,2017						

LIIOMCOOF			Professional Elective:								L	Т		Р	С	
019	WIC905		DIGITAL MANUFACTURING								3	0		0	3	
Course Outcomes																
After successful completion of this course, the students should be able to																
CO1:	Explain steps involved in Rapid tooling and Addictive manufacturing.															
CO2:	Discuss various fabrication & modelling techniques.															
CO3:	State fundamental concepts of Automation and adaptive control Techniques.															
CO4:	Interpret the types and function of robots and Automated guided vehicles.															
CO5:	Discuss various applications of Industrial IoT.															
Pre-requisite																
1. Manufacturing Technology																
2. Computer Aided Design and Manufacturing																
CO/PO, PSO Mapping																
Drogramma Outcomes (DOs) and Drogramma Superific Outcomes (DOCs)																
COs	POI								Doo					PSO	PSO	
	POI	PO	2 PO		4	PO5	PO6	PO7	PO8	P09	PO 10	PO 11	PO 12	1	2	
CO1	3	3	3			3								3	3	
CO2	3	3	3			3								3	3	
CO3	3	3	3	3				3			3		3	3	3	
CO4	3	3	3	3							3			3	3	
CO5	3	2	3	2		3	3		2		3	3 2 3 3				
						Cour	se Asse	essmen	t metho	ods						
					Dir	rect							Indir	ect		
Interna	l test I (	8)			Online test (6)				Course end survey							
Interna	l test II			Attendance (5)												
Interna		-	E	End semester Examination (60)												
Assignment/seminar/Quiz (5)																
Unit 01: INTRODUCTION TO ADDITIVE ENGINEERING 9 Hours																
Needs, Impact of AM and Rapid Tooling on product development, Distinction between AM and CNC																
machin	ing, Th	ne Ge	eneraliz	ed AN	ЛF	Process	s chain	- CA	D Moc	lel: Inj	out file	forma	its, Ge	neratio	n and	
convers	sion of a	STL f	ile, Fil	e verifi	cati	ion an	d repai	r, Build	d file c	reation	- Part	constru	iction:	Part cle	eaning	
and finishing - RP benefits and classification of RP systems.																

Unit 02: LIQUID POLYMER AND SOLID BASED SYSTEMS       9 Hours										
Stereo lithography apparatus (SLA), Fused deposition modeling (FDM), Laminated object manufacturing										
(LOM), Selective laser sintering (SLS), Ballistic particle manufacturing (BPM), Working principle,										
Construction, Materials and applications.										
Unit 03: INTRODUCTION TO MANUFACTURING PROCESS AUTOMATION       9 Hours										
Introduction: Automation, Numerical control, Programming, Adaptive control – Material handling and										
movement – Sensor technology – Flexible fixturing.										
Unit 04: INDUSTRIAL ROBOTS AND AUTOMATED GUIDED VEHICLE       9 Hours         SYSTEMS       9 Hours										
Introduction: Structure and operation of robots, Robot anatomy, Types, Programming, Applications;										
Industrial – Non-industrial – Automated guided vehicle systems: Types, Applications and functions.										
Unit 05: INDUSTRIAL INTERNET OF THINGS 9 Hours										
Introduction: Understanding the Industrial IoT Process - Industrial data flow and devices - Security										
management of an IoT ecosystem - Case studies: Manufacturing, Oil and gas, Power utility industry.										
Theory: 45Hrs		Tutorial:	Practical:	Total Hours: 45Hrs						
TEXT B	OOKS									
1.	C. K. Chua, K. F. Leong and C. S. Lim, "Rapid prototyping: Principles and applications", Cambridge University Press, 2010.									
2.	Serope Kalpakjian, "Manufacturing Engineering and Technology", Pearson, Fourth edition.									
REFERENCES										
1.	I. Gibson, D. W. Rosen, and B. Stucker, "Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010									
2.	Barrenechea, Mark j. Jenkins, Tom "Digital Manufacturing", First published in Canada 2018.									
3.	Zongwei Luo, Robotics, ""Automation and control in Industrial and service settings", published in the United States of America by Engineering science.									

U19MC906			Professional Elective: DRONE TECHNOLOGY									Т	Р	С		
					DRON						3	-	-	3		
After successful completion of this course, the students should be able to																
<b>CU6:</b> Explain the basic knowledge about the development and potential of UAV in professional																
activities																
CO7: Illustrate the features and characteristics of an Unmanned Aerial System																
CO8: Demonstrate the basic concepts and features of flight																
CO9: Utilize the drone equipment maintenance and repair																
CO10: Develop the Regulatory measures and regulations																
Pre-requisite																
1. Electrical Drives and Controls																
2. Digital Electronics																
(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak																
		Programme Outcomes (POs) and Programme Specific Outcome (PSOs)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO1	1 PO12	PSO1	PSO2		
CO1	2	3	2	3	3	-	-	-	-	-	2	3	3	3		
CO2	2	3	2	3	3	-	-	-	-	-	2	3	3	3		
CO3	2	3	2	3	3	-	-	-	-	-	2	3	3	3		
CO4	2	3	2	3	3	-	-	-	-	-	2	3	3	3		
CO5	2	3	2	3	3	2	2	2	-	-	3	3	3	3		
	Course Assessment methods															
					Direct	-						In	direct			
Intern	al test I	(8)			Online	test (6)	)									
Intern	al test I	I (8)			Attendance (5)							Course end survey				
Intern	al test I	II (8)			End set	mester	Exami	ination	(60)			course	cita bai v	cy		
Assign	nment/s	seminar	/Quiz	(5)												
Unit 01: INTRODUCTION TO UNMANNED AERIAL VEHICLES (UAV) 9 Hours																
Overview and background: History of UAVs, Classifications of UAVs, Lift generation and thrust																
generation method, working of an UAV, Contemporary applications like military and civil areas –Ethical																
implications LOS / BLOS, Advantages and disadvantages of an UAV.																
Unit 02: UNMANNED AERIAL SYSTEM (UAS) COMPONENTS9 Hours																
Platforms – Configurations – Characteristics – Propulsion: Internal combustion engines, Turbine engines,																
Electric systems – On-board flight control – Payloads: Sensing/Surveillance. Communications:																
Command/Control, Telemetry, Launch/recovery systems – Ground control stations																
Unit 03: BASIC CONCEPTS OF FLIGHT9 Hours																
Aerodynamics: Lift, weight, Thrust and drag – Flight performance: Climbing vs. Gliding flight, Range /																
Endur	- ance –	Stabilit	y and o	contro	ol: Fligh	t axes,	Flight	contro	ols, Au	topilots	– Fixed	d wing o	perations	s: Types		
of fixed wing drones, Make, Parts, Terminology and Operation.																
Unit 0	4: DRONE EQUIPM	ENT MAINTENAN	CE AND APPLICATION	S	9 Hours											
--------	--------------------------------------------------------------------------------------------------------	-----------------------	----------------------------	---------------------	-----------------	--	--	--	--	--	--					
Maint	Maintenance of drone: Flight control box – Maintenance of ground equipment – Batteries – Fault finding															
and re	ectification –Weather	and meteorology, Si	urveying & mapping, cons	truction & Agricu	lture sector.											
Unit (	5: REGULATORIES	AND REGULATIO	DNS	-	9 Hours											
Home	Homeland Regulatories: FCC, FAA and Foreign regulatory - Regulations: FCC compliance, European															
union	union regulations, UAS registration, Federal Aircraft Regulations (FARs) - Safety considerations															
]	Theory: 45 Hrs     Tutorial:     Practical:     Total Hours: 45Hrs															
TEXT	BOOKS															
4.	Reg Austin, "Unma	nned Aircraft System	ns UAV design, developm	ent and deployme	ent", Wiley,											
	2010.															
5.	Paul Fahlstrom, The	omas Gleason, "Intro	duction to UAV Systems",	4th Edition, John	Wiley & Sons,											
	NA, 2016.															
REFE	RENCES															
4.	P K Garg, "Introdu	ction to Unmanned	Aerial Vehicles", New Ag	e International F	rivate Limited,											
	2020															
5	Garvit Pandva "Ba	sics of Unmanned A	Aerial Vehicles" Notion n	ress 2021												
0.	Garvier andya, Da		ienar venicies , ivolion p	1033, 2021												
6.	Jha, "Theory, Desig	n, and Applications	s of Unmanned Aerial Veh	icles", 1st Edition	n, CRC press,											
	Florida, 2017.															
7.	Randal W. Beard &	Timothy W. McLai	n, "Small Unmanned Airc	raft: Theory and	Practice",											
	Princeton Universi	ty Press, Newjersy, 2	2010.													

					Pı	rofessi	onal E	lective	2:		L		Т	Р	С
U	19N	AC907			Professional Elective:LTPCDESIGN THINKING AND3003										
					PRO	DUCT	[ INNO	OVAT	ION		3		0	0	3
Cours	se O	)utcom	es												
After	suc	cessfu	comp	etion o	f this c	ourse,	, the st	udents	s shou	ld be ab	le to				
CO1:		Relate	he var	ious sys	temati	c appr	oach fo	or innc	ovative	e design	s.				
CO2:		Descril	e the p	oroduct	develo	pmen	t proce	ess.							
CO3:		Explain	the ne	ed for p	oroduc	t speci	ficatio	n and	concep	ots gene	ration.				
CO4:		Design	princi	ples to c	levelop	o new	produ	cts.							
CO5:		Familia	rize th	e conce	pts of I	ntellec	ctual P	roperty	y right	s.					
Pre-re	equi	isite													
	1. Basic Electrical Engineering														
	CO/PO, PSO Mapping														
			(3/2,	'1 indica	ates str	ength	of corr	elatior	n) 3-St	rong, 2-l	Mediur	n, 1-We	eak		
COs				Progra	nme O	utcome	es (POs)	and Pı	ogram	ime Spec	ific Out	come (P	SOs)		
601	PO	01 PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSC	51	PSO2
COI	3	2	2			2	2	2	2		2	2	3		2
$CO_2$	3	2	2			3	2	2	3		2	2	3		2
CO4	3	3	2			2	2	2	3		3	3	3		2
CO5	3	3	2			2	2	2	0		0	3	3		2
	-	_				Cour		osemo:	nt me	thods		-	-		
Course Assessment methods															
					Di	rect	5C A55	essine.	int inco	inous			Inc	direct	
Interr	nal te	est I (8)			Din	rect line te	st (6)	essine		liious			Inc	direct	
Interr	nal te	est I (8) est II (8	)		Din On Att	rect line te	st (6) .ce (5)					6	Inc	direct	
Interr Interr Interr	nal to nal to nal to	est I (8) est II (8 est III (8	) 3)		Din On Att End	rect line ter rendan d Seme	st (6) .ce (5) ester E	xamina	ation (	60)		Co	Ind ourse e	direct end su	rvey
Interr Interr Interr Assig	nal te nal te nal te	est I (8) est II (8 est III ( ent/Sen	) 3) hinar/Q	9uiz (5)	Din On Att End	rect line ter rendan d Seme	st (6) .ce (5) ester E	xamina	ation (	60)		Co	Ind	direct end su	rvey
Interr Interr Interr Assig <b>Unit</b> (	nal to nal to nal to nme D1: I	est I (8) est II (8 est III ( ent/Sen DESIG	) 3) ninar/Q N THI	uiz (5) NKING	Din On Att End	rect line ter rendan d Seme	st (6) .ce (5) ester E	xamina	ation (	60)		Co	Ind ourse o	direct end sur 9 Hor	rvey urs
Interr Interr Interr Assig <b>Unit</b> ( Desig	nal te nal te nal te nme <b>D1: I</b> n th	est I (8) est II (8 est III ( ent/Sen <b>DESIG</b> hinkinş	) 3) ninar/Q N THI : Intro	puiz (5) NKING ductior	Din On Att End	rect line ter endan d Seme ciples,	st (6) .ce (5) ester E: Proce	xamina ess, Ini	ation (	60) on in d	esign	Co	Ind ourse o g, ber	direct end su 9 Hor	rvey urs of design
Interr Interr Assig <b>Unit</b> Desig think	nal te nal te nme <b>D1: I</b> n th	est I (8) est II (8 est III ( ent/Sen <b>DESIG</b> hinking – Ide	) 3) N THI : Intro a gene	puiz (5) NKING ductior eration:	Din On Att End	rect line tere endan d Seme ciples, duction	st (6) .ce (5) ester E Proce	xamina ess, Int chnique	ation ( novati	60) on in d	esign †	Co thinkin	Ind ourse o g, ber , Intu	direct end su 9 Hor nefits o uitive	rvey urs of design methods,
Interr Interr Assig <b>Unit</b> Desig thinki Brain	nal te nal te nme D1: I n tl	est I (8) est II (8 est III ( ent/Sen <b>DESIG</b> hinking – Ide ming –	) 3) N THI : Intro a gene Metho	uiz (5) NKING ductior eration: ds for c	Din On Att End	ciples, duction	st (6) .ce (5) ester E Proce n, Tec ution -	xamina ess, Int chnique - Decis	ation ( novati es, Co sion m	60) on in d onventio aking fo	esign f	Co thinkin aethods design	Ind ourse o g, ber , Intu	direct end sur 9 Hom nefits of aitive	rvey urs of design methods,
Interr Interr Assig Unit ( Desig think: Brain	nal to nal to nal to nme <b>D1: I</b> n th ing storn <b>D2: F</b>	est I (8) est II (8 est III ( ent/Sen <b>DESIG</b> hinkinş – Ide ming – <b>PRODI</b>	) 3) N THI : Intro a gene Metho ICT D	uiz (5) NKING ductior eration: ds for c EVELO	Din On Att End , Prind Introd ombini PMEN	ciples, duction T PRC	st (6) .ce (5) ester E Proce n, Tec ution - DCESS	xamina ess, Inr chnique - Decis	ation ( novati es, Co sion m	60) on in d onventio aking fo	esign f onal m or new o	Co thinkin tethods design	Ind ourse o g, ber , Intu	direct end sur 9 Hor nefits iitive 9 Hor	rvey urs of design methods, urs
Interr Interr Assig <b>Unit</b> Desig think Brain <b>Unit</b>	nal to nal to nme D1: I n th ing storn 22: I duct	est I (8) est II (8 est III ( ent/Sen DESIG hinkinş – Ide ming – PRODI ion to	) ainar/Q N THI : Intro a gene Metho JCT D desig	puiz (5) NKING ductior eration: ds for c EVELO n – F	Din On Att End , Prind Introd ombini PMEN undam	rect line ter rendan d Semo ciples, duction ing sol T PRC	st (6) ce (5) ester E Proce n, Tec ution - <b>DCESS</b>	xamina ess, Ini ehnique - Decis	ation ( novation es, Co sion m	60) on in d onventio aking fo	esign to onal m or new o	Co thinkin tethods design oduct	Ind ourse o g, ber , Intu plann	direct end su 9 Hor nefits o uitive 9 Hor ing –	rvey urs of design methods, urs Product
Interr Interr Assig <b>Unit</b> Desig think Brain <b>Unit</b> Introd devel	nal te nal te nme <b>D1: I</b> n th ing storn <b>D2: F</b> luct	est I (8) est II (8 est III ( ent/Sen <b>DESIG</b> hinking – Ide ming – <b>PRODI</b> ion to nent pr	) ainar/Q N THI : Intro a geno Metho JCT D desig	puiz (5) NKING ductior eration: ds for c EVELO n – F ¹ Opport	Din On Att End N, Prind Introd ombini PMEN undam unity i	ciples, duction ing sol <b>T PRC</b> dentif	st (6) .ce (5) ester E Proce n, Tec ution - <b>DCESS</b> of s ication	xamina ess, Ini chnique - Decis ystema - Inno	ation ( novati es, Co sion m atic a	60) on in d onventio aking fo pproach n in proo	esign f onal m or new o – Pr duct de	Co thinkin tethods design oduct velopn	Ind ourse o g, ber , Intu plann nent –	direct end su 9 Hor nefits o uitive 9 Hor ing – Cost e	rvey urs of design methods, urs Product stimation
Interr Interr Assig Unit Desig thinki Brain Unit devel Unit	nal to nal to nme <b>D1: I</b> n th ing storn <b>D2: H</b> duct opm <b>D3: F</b>	est I (8) est II (8 est III ( ent/Sen DESIG hinkinş – Ide ming – PRODI ion to nent pr	) 3) N THI : Intro a geno Metho JCT D desig ocess – JCT SH	uiz (5) NKING ductior eration: ds for c EVELO n – F Opport ECIFIC	Din On Att End n, Prind Introd ombini PMEN undam unity i CATIO	ciples, duction ing sol <b>T PRC</b> dentals dentif	st (6) .ce (5) ester E Proce n, Tec ution - <b>DCESS</b> of s ication <b>D CO</b>	xamina ess, Inn chnique - Decis ystema - Inno NCEPT	ation ( novati es, Co sion m atic a ovation	60) on in d onvention aking for pproach n in proo <b>NERAT</b>	esign f onal m or new o . – Pr duct de <b>ION</b>	Co thinkin hethods design oduct evelopn	Ind ourse o g, ber , Intu plann nent –	direct end su 9 Homefits aitive 9 Homefits Cost e 9 Homefits	rvey urs of design methods, urs Product stimation urs
Interr Interr Assig Unit Desig thinki Brain Unit Introd devel Unit	nal to nal to nme <b>D1: I</b> n th ing storn <b>D2: I</b> luct <b>O3: I</b> nct S	est I (8) est II (8) est III ( ent/Sen <b>DESIG</b> hinking – Ide ming – <b>PRODI</b> ion to nent pr <b>PRODI</b>	) 3) iinar/Q N THI : Intro a gene Metho JCT D desig DCT SI ation -	uiz (5) NKING eduction eration: ds for c EVELO n – F Opport ECIFIC	Din On Att End , Prind Introd ombini PMEN undam unity i CATIO	ciples, duction ing sol <b>T PRC</b> entals dentif	st (6) ce (5) ester E Proce n, Tec ution - <b>DCESS</b> of s ication <b>D CO</b>	xamina ess, Ini chnique - Decis ystema - Inno NCEPT	ation ( novati es, Co sion m atic a ovation <b>S GE</b>	60) on in d onventio aking fo pproach n in proo <b>NERAT</b> tion: Me	esign f onal m or new o - Pr duct de <b>ION</b> ethods,	thinkin thinkin design oduct evelopn Conce	Ind ourse o g, ber , Intu plann nent – pt scree	direct end sur 9 Homefits aitive 9 Homefits ing – Cost e 9 Homefits	rvey urs of design methods, urs Product stimation urs , Concept
Interr Interr Assig <b>Unit</b> Desig think Brain <b>Unit</b> Introd devel <b>Unit</b> Produ Scorin	nal te nal te nme <b>D1: I</b> n th ing storr <b>D2: I</b> duct <b>Opm</b> <b>D3: F</b>	est I (8) est II (8) est III ( ent/Sen DESIG hinkinş – Ide ming – PRODI ion to nent pr PRODI	) ainar/Q N THI : Intro a gene Metho JCT D desig DCESS – JCT SI ation – ot testi	puiz (5) NKING eration: ds for c EVELO n – F Opport ECIFIC Concep ng – Pro	Din On Att End Introd ombini PMEN undam unity i CATIO ots ger ototypi	rect line ter eendan d Semo ciples, duction ing sol T PRC hentals dentif N AN heratio ng: Ty	st (6) ce (5) ester E: Proce n, Tec ution - OCESS of s ication D COI on – Co pes an	xamina xamina ss, Ini hnique - Decis ystema - Inno NCEPI oncepts d Prine	ation ( novati es, Co sion m atic a ovation <b>FS GE</b> s selec ciples	60) on in d onventio aking fc pproach n in proo <b>NERAT</b> tion: Me	esign f onal m or new o - Pr duct de <b>ION</b> ethods,	conce	Ind ourse o g, ber , Intu plann nent – pt scre	direct end su 9 Hor nefits o itive 9 Hor Cost e 9 Hor eening	rvey urs of design methods, urs Product stimation urs , Concept
Interr Interr Assig <b>Unit</b> Desig thinki Brain <b>Unit</b> Introd devel <b>Unit</b> Scorin <b>Unit</b>	nal te nal te nme <b>D1: I</b> n th <b>i</b> ng storn <b>D2: F</b> duct <b>0</b> <b>0</b> <b>3: F</b> uct S <b>0</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	est I (8) est II (8) est III ( ent/Sen DESIG hinkiną – Ide ming – PRODU ion to nent pr PRODU Specific CASE S	) 3) iinar/Q N THI : Intro a gene Metho ICT D desig ocess – ICT SH ation – ot testi TUDY	Puiz (5) NKING ductior eration: ds for c EVELO n – F Opport ECIFIC Conce ng – Pro IN PRO	Din On Att End Introd ombini PMEN undam unity i CATIO ots ger ototypi DDUC	ciples, duction ing sol <b>T PRC</b> ientals dentif <b>N AN</b> neration ng: Ty <b>T DEV</b>	st (6) .ce (5) ester E Proce n, Tec ution - OCESS of s ication D COI on – Co pes an /ELOF	xamina ess, Ini ess, Ini ehnique - Decis ystema - Inne NCEPT oncepts d Prine <b>'MEN</b>	ation ( novati es, Co sion m atic a ovation <b>TS GE</b> s selec ciples <b>F</b>	60) on in d onventio aking fo pproach n in proo <b>NERAT</b> tion: Me	esign f onal m or new o – Pr duct de <b>ION</b> ethods,	Conce	Ind ourse o g, ber , Intu plann nent – pt scre	direct end su 9 Hor hefits o litive 9 Hor cost e 9 Hor eening 9 Hor	rvey urs of design methods, urs Product stimation urs , Concept urs
Interr Interr Assig Unit ( Desig thinki Brain Unit ( Introd devel Unit ( Produ Scorin Unit ( Agric	hal to hal to h	est I (8) est II (8) est III ( ent/Sen DESIG hinking – Ide ming – PRODU ion to nent pr PRODU Specific Conce CASE S ure: De	) 3) iinar/Q N THI : Intro a gene Metho JCT D desig ocess – JCT SH ation – ot testi TUDY zelopm	uiz (5) NKING ductior eration: ds for c EVELO n – F Opport ECIFIC Concep ng – Pro IN PRO ent of p	Din On Att End Introd ombini PMEN undam unity i CATIO ots ger ototypi DUUC machir	ciples, duction ing sol <b>T PRC</b> eentals dentif <b>N AN</b> meration ng: Ty <b>T DEV</b> nes for	st (6) .ce (5) ester E Proce n, Tec ution - <b>DCESS</b> of s ication <b>DCOM</b> n – Co pes an <b>/ELOP</b>	xamina ess, Inn chnique - Decis ystema - Inno NCEPT oncepts d Prino PMENT ation o	ation ( novations, Co sion m atic a povation <b>FS GE</b> s select ciples <b>F</b> of corr	60) on in d onventio aking fo pproach n in proo <b>NERAT</b> tion: Me	esign f onal m or new of - Pr duct de ION ethods, Peeling	thinkin thinkin tethods design oduct velopn Conce g of gro	Ind ourse o g, ber , Intu plann hent – pt scree	direct end sur 9 Hom nefits of itive 9 Hom cost e 9 Hom eening 9 Hom nut she	rvey urs of design methods, urs Product stimation urs , Concept urs urs
Interr Interr Assig Unit ( Desig think: Brain Unit ( Introd devel Unit ( Produ Scorin Unit ( Agric remov	hal to hal to h	est I (8) est II (8) est III (8) est III (8) ent/Sen <b>DESIG</b> hinking – Ide ming – <b>PRODU</b> ion to nent pr <b>PRODU</b> Specific CASE S ure: De g from	) iinar/Q N THI : Intro a gene Metho ICT D desig ocess – ICT SI ation – ot testi TUDY zelopm paddy	puiz (5) NKING eduction eration: ds for c EVELO n – F Opport ECIFIC Conce ng – Pro IN PRO ent of r – Elect	Din On Att End Introd ombini PMEN undam unity i CATIO ots ger ototypi DDUC machir rical: I	ciples, duction ing sol <b>T PRC</b> eentals dentif <b>N AN</b> meration ng: Ty <b>T DEV</b> nes for Design	st (6) ce (5) ester E Proce n, Tec ution - <b>DCESS</b> of s ication <b>DCON</b> n – Co pes an <b>/ELOP</b>	xamina ess, Ini chnique - Decis ystema - Inno NCEPI oncepts d Prine 'MEN' ation o rglar a	ation ( novati es, Co sion m atic a ovation <b>S GE</b> s selec ciples <b>F</b> of corr larm,	60) on in d onventio aking fo pproach n in proo <b>NERAT</b> tion: Me	esign f onal m or new o duct de ION ethods, Peeling meter,	thinkin ethods design oduct velopn Conce g of gro Water	Ind ourse o g, ber , Intu plann nent – pt scro oundr level i	direct end su 9 Hor hefits o itive 9 Hor Cost e 9 Hor eening 9 Hor ut she ndicat	rvey urs of design methods, urs Product stimation urs , Concept urs ells, Husk or, Smart
Interr Interr Assig <b>Unit</b> Desig think Brain Unit Introd devel Unit Scorir Unit Agric remov gates,	nal te nal te nme <b>D1: I</b> n th ing storn <b>D2: I</b> duct <b>Opm</b> <b>D3: F</b> <b>D3: F</b> <b>D4: C</b> ultu ving and	est I (8) est II (8) est III ( ent/Sen DESIG hinkinş – Ide ming – PRODI ion to nent pr PRODI Conce CASE S ure: De g from d Smar	) Ainar/Q N THI : Intro a gene Metho JCT D desig ocess – JCT SH ation – ot testi TUDY relopm paddy lights	puiz (5) NKING eduction eration: ds for c EVELO n – F Opport ECIFIC Concep ng – Pro IN PRO ent of r – Elect – Desig	Din On Att End Introd ombini PMEN undam unity i CATIO ots ger ototypi DDUC machir rical: I n of eld	ciples, duction ing sol <b>T PRC</b> ientals dentif <b>N AN</b> meration ng: Ty <b>T DEV</b> nes for Design ectrica	st (6) .ce (5) ester E Proce n, Tec ution - OCESS of s ication D CON n – Co pes an /ELOP separ of bui l vehic	xamina ess, Ini chnique - Decis ystema - Inne NCEPI oncepts d Prine <b>'MEN</b> ation c rglar a les – U	ation ( novati es, Co sion m atic a ovation <b>TS GE</b> s selec ciples <b>F</b> of corr larm, Inman	60) on in d onventio aking fo pproach n in proo <b>NERAT</b> tion: Me n seeds, Speedon ned veh	esign for new of a sign for new of a sign for a sign fo	conce g of gro Water Design	Ind ourse o g, ber , Intu plann nent – pt scro oundr level i princi	direct end su 9 Hor nefits o itive 9 Hor cost e 9 Hor eening 9 Hor nut she ndicat iples ir	rvey urs of design methods, urs Product stimation urs , Concept urs ells, Husk or, Smart n drones

Unit (	<b>)5: INTELLECTUAI</b>	PROPERTY RIC	GHTS (IPR)		9 Hours						
Basic	concepts and need	d for Intellectua	1 Property – Patents: Pate	nt search, Pater	nt applications,						
Interr	national code for Pa	itents – Copyrigl	nts – Geographical Indicatio	ns – Trademark	– Preparing a						
disclo	sure										
]	Theory: 45 HrsTutorial:Practical:Total Hours: 45 Hrs										
TEXT	BOOKS										
1.	Karl T. Ulrich, St	even D. Eppinge	er," Product Design and De	evelopment",Sixtl	n Edition, Tata						
	Mcgraw Hill Educa	tion,2016									
2.	Hasso Plattner, Chri	istoph Meinel and	l Larry Leifer,"Design Thinkir	ng",First Edition,	Springer, 2011						
REFE	RENCES										
1.	Philip Kosky, Rob	ert T. Balmer, V	Villiam D. Keat, George Wis	se, "Exploring E	ngineering: An						
	Introduction to Eng	ineering and Des	ign", Fouth edition, Elsevier, 2	2016							
2.	G. Pahl, W.Beitz, J	. Feldhusen, KH	Grote, "Engineering Design:	A Systematic Ap	proach", Third						
	Edition, Springer, 2	007									
3.	Gavin Ambrose ,	Paul Harris, "Ba	sics Design - Design Thinki	ng", First Editio	on, Bloomsbury						
	Publishing India Private Limited,2009.										
4.	Tom Kelley, Jonath	an Littman, "Ten	Faces in Innovation", Currence	y Books, 2006.							

U	19MC6	04			IMAG	GE PR	OCES	SING	LABO	RATO	RY		L	Т	Р	С
	0     0     2     1       rse Outcomes															
Cours	e Outco	omes														
After	success	ful con	npletio	on of t	his cou	arse, t	he stuc	lents s	hould	be able	e to					
CO1:	Wr	ite a M	ATLA	B code	e to dei	nonst	rate an	d perfo	orm va	arious oj	peratior	is on a g	iven	tex	t im	age.
CO2:	Wr	ite a M	ATLA	B code	to ext	ract fe	eatures	from t	ext im	ages ,in	nage seg	mentati	on a	nd		
	con	npressi	on.													
CO3:	Wr	ite a M	ATLA	B code	e to ima	age pr	ocessir	ig app	licatio	ns						
Pre-re	quisite															
						CO/I	PO, PS	O Mag	pping							
		(3/	'2/1 ine	dicates	streng	gth of	correla	$\frac{1}{2}$	-Stron	g, 2-Me	dium, 1	-Weak				
6.0			Progra	amme	Outco	mes (l	'Os) an	d Prog	ramm	le Specif	ic Outc	ome (PS	Os)		1	
COs	PO1	PO	PO 2	PO	PO 5	PO	PO 7	PO	P09	PO10	POTT	PO12	PS	<b>D</b> 1	Р	SO2
CO1	3	2	2	4 2	5	0	2	0		2			, C	2		2
$CO^2$	3	2	3	2			2			2				, }		2
CO3	3	3	2	2			2			2			3	}		2
	, , , , , , , , , , , , , , , , , , ,		_	_	C	ourse	 Assess	ment	metho	ds						_
					Di	rect							Ind	ireo	ct	
CIE T	EST-I (2	.0)				R	TPS (1	0)				Course	e enc	l su	rvey	y
Quiz-	I (5)					E	nd sen	nester ]	Exami	nation (	40)					
CIE T	EST-II (	20)														
Quiz-J	II (5)															
List of	f Experi	iments														
Using	MATL	AB														
1.	Demo	nstratir	ng Fals	se Con	tour Ef	fect.										
2.	Extrac	tion an	d disp	olay of	each b	its as a	an imag	ge for a	a giver	n 8 bit g	ray scale	e image.				
3.	RGB F	'lane ex	tractio	on												
4.	Conve	ersion f	rom R	GB to 1	HSI											
5.	Histogram Mapping and Equalization															
		Spatial Domain Image Enhancement.														
6.	Spatia	l Doma	111 11110	-80 -11				Edge Detection Algorithms.								
6. 7.	Spatia Edge I	l Doma Detectio	on Alg	orithn	ns.											
6. 7. 8.	Spatia Edge I Pseud	l Doma Detectio o Color	on Alg	orithm	ıs.											
<ol> <li>6.</li> <li>7.</li> <li>8.</li> <li>9.</li> </ol>	Spatia Edge I Pseud Morph	l Doma Detectio o Color nologica	in Alg ing. al Ope	porithm eration	ıs. s on Bi	nary I	mages				1					
6. 7. 8. 9. 10.	Spatia Edge I Pseud Morph Comp	l Doma Detectio o Color nologica uting tl	nn Alg ring. al Ope ne DW	orithm erationa /T of a	ns. s on Bi n imag	nary l e and	mages. displa	ying th	ne LL, T	LH, HL	and HL	, images				

U19	MC60	)5	3D I	MODE	LLING	G ANI	D ANA	LYSI	S LAB	ORAT	ORY	L	Т	Р	C
												0	0	2	1
Course C	Jutco	mes													
After suc	cessf	ul comj	pletior	n of thi	s cour	se, the	e stude	nts sh	ould k	oe able	e to				
CO1:	(	Constru	ct the	2D vie	ws of s	tanda	rd mac	chine c	ompo	nents					
CO2:	0	Create 3	D moo	del, ass	emblir	ng and	detail	ing fo	r the e	engine	ering co	mpoi	nents	susing	g solid
	v	vorks s	oftwar	e.											
CO3:	I	Analysis	s the s	tructur	al com	poner	nts (Bea	ams) u	sing A	NSYS	softwa	e.			
Pre-requ	Pre-requisite														
Engineering graphics															
					C	CO/PO	, PSO	Mapp	ing						
		(3/2/	/1 indi	cates st	rength	of co	rrelatio	on) 3-S	trong,	2-Mec	lium, 1-	Weal	κ		
		]	Progra	mme (	Dutcon	nes (PC	Os) and	d Prog	ramm	e Spec	ific Out	come	(PSC	Os)	
COs	РО	РО	РО	РО	РО	РО	РО	РО	POQ		РО	РО	1 ]	PSO	PSO 2
	1	2	3	4	5	6	7	8	109	1010	11	2		1	1302
CO1	1	3	1		3	1		2		3	3	3		2	3
CO2	2	3	3	3	3	2			2	3	3	3		3	2
CO3	3	3	3	3	3	3	2	3	1	3	3	3		2	3
	•				Cou	rse As	sessm	ent m	ethods	5			ľ		
					Dire	ect							]	Indire	ect
CIE TEST	Г-І (20	)				R	TPS (1	0)				Co	ourse	e end s	survey
Quiz-I (5	)					E	nd sen	nester	Exami	nation	(40)				
CIE TEST	Г-II (2	0)													
Quiz-II (S	5)														
List of Ex	xperir	nents													
1. Intro	oducti	on of 3I	D Mod	lelling	softwa	re									
2. Crea	tion c	of 3D as	sembly	y mode	el of Fla	ange C	Couplin	ng.							
3. Crea	tion c	of 3D as	sembly	y mode	el of Pl	umme	r Blocl	κ.							
4. Crea	tion c	of 3D as	sembly	y mode	el of Sc	rew Ja	ick.								
5. Crea	tion c	of 3D as	sembly	y mode	el of Ui	niversa	al Joint	t.							
6. Crea	tion c	of 3D as	sembly	y mode	el of M	achine	e Vice.								
7. Crea	tion c	of 3D as	sembly	y mode	el of Sa	fety V	alves.								
8. Crea	tion c	of 3D as	sembly	y mode	el of No	on-ret	urn va	lves.							
9. Strue	ctural	analysi	is 2D c	ompor	ients o	f Bean	n (Cant	tilever	) with	point	load and	d torc	que.		
10. Strue	ctural	analysi	$\frac{1}{2}$ s 2D c	ompor	ients o	t Bean	ns (Sim	ply su	pport	ed) wi	th UDL	load.			
11. Ther	mal a	nalysis	2D CO	mpone	nts.									-	
												To	otal I	lours	: 30 Hrs

	101/	7606				MINI	PROI	ЕСТ П				L	Т	Р	C
U	191010	2000				IVIIINI	rkoj	EC 1-11				0	0	2	1
Cours	se Ou	tcomes										1			
After	succe	ssful c	omple	tion of	this co	urse, t	he stu	dents sl	nould b	e able to	I				
CO1:	Fı	ame a	real w	orld pro	oblem,	identi	fy the	require	nent ar	nd develo	op the	design	solution	ns. Ex	press
	th	e techn	ical id	eas, stra	ategies	and m	ethodo	ologies.							
CO2:	A	pply th	e new	tools, a	lgoritł	nms, te	chniqu	ies that	contrib	oute to ob	otain t	he solu	tion of t	he pr	oject.
	Ex	kamine footiwor	and v	validate	throu	gh cor	itorma	nce of	the dev	veloped j	prototy	ype and	d analys	e the	cost
CO3:	P1	epare 1	report	and pre	sent th	e oral	demor	stration	ns						
			cpon					SO Ma	nning						
			(2/2/2/1	ا م ال م ا		e eth e	f					Maal			
	(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak														
COs	DOI	DOD	DOG	Program	ime Ou	tcomes	(POs) a	and Prog	ramme	Specific C	Dutcom	e (PSOs	)		
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	POIT	PO12	PSOT	P	502
CO1	3	3	3	2	1	2	2	2	2	2	1	1	3		2
CO2	3	3	3	3	3	2	2	2	2	2	3	3	3		2
CO3	3	2	2	2	2	2	3	3	3	3	1	1	3		2
						Cours	e Asse	ssment	method	ds					
					Dire	ect							Indirect		
Revie	ew- I	(10 ma	rks)		End	semes	ter Ex	aminat	ion (40	marks)		Cours	se end s	ırvey	
Revie	ew- II	(10 m	arks)												
Revie	ew- II	I (10 m	arks)												
Proje	ct & 1	report	(30 ma	arks)											
1.	The	studer	ts forr	ned into	o a tear	n of co	onvenie	ent grou	ips of n	ot more l	than 3	membe	ers on a	proje	ct are
	not	allowe	d to ch	ange th	eir tea	m men	nbers.								
2.	Eve	ry proj	ect tea	m shou	ld repo	ort to tl	neir fao	culty gu	ide for	discussio	on froi	n the d	ay of be	ginni	ng of
	6 th s	emeste	r.												
3.	The	group	has to	analyze	e the se	elected	proble	em addı	essed in	n their pr	oject v	vork to	draw so	olutio	n.
4.	Аp	roject r	eport l	has to be	e subm	itted b	y each	studen	t group	at the er	nd of tl	ne 6 th se	emester.		
5.	Thr	ee revie	ews ha	ve to be	e condi	ucted ł	- ov a tea	am of fa	cultv (r	ninimur	1 of 1 a	and ma	ximum	of 2) a	along
	witl plai	n their nning a	facult nd imj	y guide plement	e as a ation).	memb	per of	faculty	team (	for mon	itoring	g the p	progress	of pi	oject

Total Hours: 30 Hrs

Semester –VI	U19GE601-SOFT SKILLS AND APTITUDE – IV L T P C Ma (Common to All except Civil) 0 0 2 1 10	irks
Course Outcomes At the end of the co	ourse the student will be able to:	
1 Demonstrate car	pabilities in job-oriented company selection processes using the hands-on approach	
<ol> <li>Solve problems reasoning and so</li> </ol>	of any given level of complexity in all areas of quantitative aptitude and lo core 70-75% marks in company-specific internal tests	gical
<ol> <li>Demonstrate ad specific internal</li> </ol>	vanced-level verbal aptitude skills in English and score 70-75% marks in comp tests	bany-
	Demonstrating Soft -Skills capabilities with reference to the following topics:	,
1. Soft Skills	a. Mock group discussions	
	b. Mock interviews	
	c. Mock stress interviews	
	Solving problems with reference to the following topics:	
	a. Functions and Polynomials	
	b. Clocks and Calendars	
	c. Data Sufficiency: Introductions, 3 Options Data Sufficiency, 4 Options	
2 Quantitativa	Data Sufficiency and 5 Options Data Sufficiency.	
Aptitude	d. Logical reasoning: Cubes, Non Verbal reasoning and Symbol based Reason	ing.
and	e. Decision making table and Flowchart	
Reasoning	Campus recruitment papers: Solving of previous year questions paper of all	
	major recruiters	
	f. Miscellaneous: Cognitive gaming Puzzles-(Picture, Word and Number base	d),
	IO Puzzles, Calculation Techniques and Time Management Strategies,	
	g. Trigonometry Concepts	
	Demonstrating English language skills with reference to the following tonics	:
	a Writing captions for given pictures	
	b Reading comprehension	
	c. Critical reasoning	
3. Verbal Antitude	d Theme detection	
	e Jumbled sentences	e
	f Writing a story on given pictures	
	g. Company specific verbal questions	
	Department of Placement Training	
	Sona College of Technology Salem-636 005	ШПП И.

## <u>MCT</u>

τ	U19MC1003 SMART AUTOMATION L T P C 3 0 0 3													
Cours	se Outo	comes								-			-	-
After	succes	sful com	pletion	of this	cour	se, the stu	dents s	hould	be able	to				
CO	<b>1:</b> U	nderstan	d the ba	asic auto	omat	ion conce	pts							
CO	<b>2:</b> Ic	lentify th	e comp	onents	for a	utomatior	l							
CO	3: K	now the	home a	nd smai	rt cit	y automat	ion con	cepts						
CO	4: A	pply the	concep	ts of aut	toma	tion in ag	ricultur	e						
CO	<b>CO5:</b> Suggest solutions for automation and control applications in textile and medical industry													
Pre-re	requisite													
	N	IL												
		(3	8/2/1 inc	licates s	tren	CO/PO, gth of corr	PSO M elation	a <b>pping</b> ) 3-Stro	; ng <i>,</i> 2-M	edium,	1-Weal	ĸ		
COs			Program	mme O	utcor	nes (POs)	and Pr	ogramn	ne Spec	ific Out	come (I	PSOs)		
COS	PO1	PO2	PO3	PO4	PO	5 PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2		3			2			3		3	3
CO2	2	3	3		3		3		3			2	2	3
CO3	3	3	3		3		2				2		3	3
CO4	3	2	3		2					3			3	2
CO5	3	3	3		2			2				2	3	3
					С	ourse Ass	essmer	t meth	ods					
				Ľ	Direc	t						Indi	ect	
Interr Interr Interr Assig	nal test nal test nal test nment/	I (8) II (8) III (8) /seminar/	Quiz (5	)		Online te Attendar End sem	est (6) nce (5) ester Ex	kaminat	ion (60)	)	Сот	urse en	d surve	y
Unit 01	1: BAS	ICS OF A	UTOM	IATION	N								9 Hot	ırs
Introc auton Agric	duction nation rulture	– Draw system – – Health	vbacks - Indus care – D	of man stry 1.0 Defence	ual to – Au	process – 4.0 – Aut tomotive	Need tomatio Industr	of auto n requ ies	omatior ired ar	n in cu eas: He	rrent e eavy In	ra – A Idustrie	dvantag es – Ho	ges of ome –
Unit 02	2: CON	IPONEN	TS FOI	R AUTO	OMA	TION							9 Hot	ırs
Sensin for d	Sensing: Sensors – Transducers – transduction principle: resistive, Inductive and capacitive type – sensors for detecting temperature, pressure, flow and objects – Decision making: Diode – Transistor –													
Micro cylino	proces ders, sto	sor and 1 epper and	nicroco d servo	ntroller motors	, Ras – Li	spberry Pi ghts and l	- Relay ouzzers	and Pl – Anal	LC – Ao og valv	ctuatior es – Blu	1: Hydr 1etooth,	aulic a Zigbe	nd pneu e and W	ımatic /ifi for
comn	nunicat	ion.												

Unit 03	Unit 03: HOME AND SMART CITY AUTOMATION 9 Hours									
Need of Home automation – Home automation using IoT – Automated gate unlock system – smart domestic appliances – Wifi camera – object detection (dark mode) – biometric based door opening system - Smart Building using IoT – Automatic Solar Tracker - GPS & GSM based Tracker – Automated Street Lighting - Automated Railway Crossing – Smart Traffic Lighting System.										
Unit 04	E AGRICULTURE AU	TOMATION			9 Hours					
Standards for agriculture – Need for agriculture digitalization – Dielectric Soil Moisture Sensors – Weather sensors – Measurement of leaf health, chlorophyll detection, crop mapping, fertilizing, seeding and weeding machine, ripeness level detection, fruit picking robot, smart sorting system.										
Unit 05	<b>5: MEDICAL AND TE</b>	XTILE AUTOMA	TION		9 Hours					
Types assisti monit	Types of medical robots – State of art of robotics in the field of healthcare – Assistive robots – Types of assistive robots – Yarn clearer controls – Knotter /splicer carriage controls – Pre-set length/full cone monitors – Warping machine monitors and controls – Humidification system									
	Theory: 45 Hrs	Tutorial:	Practical:	Total Hou	ırs: 45 Hrs					
TEXT	BOOKS									
1.	D. Patranabis, "Senso	ors and Transduce	rs", PHI Learning pvt ltd., 20	04						
2.	Dwight Spivey, "Hon	ne Automation Fo	or Dummies", Wiley, 2015							
REFE	RENCES									
1.	Diego Galar, Pascual Systems", CRC Press,	Pasquale and Dap 2021	ponte Uday Kumar, "Handbo	ok of Industry 4.	0 and SMART					
2.	Shimon Y. Nof, "Sprin	nger Handbook o	f Automation", Springer, 2009	)						
3.	Pradeep Tomar and C Farming and Smart A	Gurjit Kaur, "Artif griculture", IGI C	ficial Intelligence and IoT-Bas Global, 2021	ed Technologies	for Sustainable					
<ol> <li>Ramesh C. Poonia, Xiao-Zhi Gao, Linesh Raja, Sugam Sharma and Sonali Vyas, "Smart Farming Technologies for Sustainable Agricultural Development", IGI Global, 2018</li> </ol>										
5.	Achim Schweikard, F	loris Ernst, "Med	ical Robotics", Springer, 2015							
6.	George stylios, "Texti E.Horwood, 1991.	le objective meas	urement and automation in g	arment manufact	ture",					

U	<b>19M</b>	C10	04		FUND	AME	ENTALS	OF RO	BOTIC	S	L	ſ	Г	Р	С
	0										3	0	)	0	3
Cours	se Ou	itco	mes												
After	succe	essf	ul comp	pletion	of this	cours	se, the stu	idents	should	be able	to				
CO	5:	Uno	derstand	d the ba	asic rob	otic c	oncepts								
CO	7:	Sele	ect the s	uitable	drive s	ysten	n for robc	ot applio	cation						
CO	8:	Sele	ect the s	uitable	sensors	s and	grippers	for the	respect	ive appl	ication				
CO	9:	Dev	velop V.	AL Pro	gramm	ing fo	or simple	applica	tions						
CO	10:	Illu	strate th	ne robo	tic appl	icatio	on in vario	ous sect	ors						
Pre-re	equis	ite													
		NIL	-												
			(2	/2/1 : 1	liceter		CO/PO,	PSO M	lapping	5	dim	1 1471			
		_	(3)	$\frac{2}{1}$ ind	incates s	streng	$\frac{1}{2}$ of cori		) 3-Stro	ng, 2-M	ealum,	1-vveal	K DC(-)		
COs	PO	)1	PO2	Prograi PO3	nme O PO4	PO	nes (POs) 5 PO6	PO7	ogramn PO8	ne Speci P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3			2			3	2		3		3	3	3	3
CO2	2		2	2		3				3		2	3	2	3
CO3	3		2	2		3				3		2	3	3	3
CO4	3		3	3	3	3				3		2	3	3	2
CO5	3		3	3	3	3	3	3		3			2	3	3
						Сс	ourse Ass	essmer	nt meth	ods					
					Γ	Direct							India	rect	
Interr	al tes	st I (	(8)				Online te	est (6)							
Interr	al tes	st II st III	(8) [ (8)				Attendar	nce (5)	aminal	$i_{\rm or}$ (60)		Co	urse en	d surve	y
Assig	nmer	nt/se	eminar/(	Quiz (5	)		End Sem	ester E	Kammat	.1011 (00)					
Unit 01	l: IN	ГRC	DUCT	ION T	O ROE	OTI	CS							9 Hot	ırs
Introd	luctio	on to	o Roboti	cs – Hi	istory of	f Rob	otics – L	aws of	Robotic	s - Ana	tomy of	f a Rob	ot – Cla	assificat	ion of
Robot	ts – l	Rob	ot Conf	figuratio	ons - R	lobot	subsyste	ms: Mo	otion su	lbsysten	n, Reco	gnition	subsys	stem, C	ontrol
subsy	stem	– K	obot Lii	1KS - JC	oints in	robot	-Robot S	Specific	ations.						
Unit 02	2: RO	BO	т мот	IONS	AND D	RIVI	E SYSTEN	MS						9 Hot	ırs
Degrees of freedom – DOF associated with arm and body - DOF associated with wrist –Joint Notation scheme- Robot Kinematics – Robot Drive systems – Hydraulic Actuators – Pneumatic actuators – Electrical															
Unit 03	3: RO	BO'	T SENS	SORS A	ND EN	ND EI	FFECTO	RS						9 Ho1	ırs
Classi effect Vacut	Classification of Robotic sensors and their functions – Tactile sensors – Inductive Proximity sensor – Hall effect sensor – Range sensor –Force ant Torque sensors- Types of end effectors – Mechanical grippers – Vacuum cups – Magnetic grippers – Adhesive grippers – Tools as end effectors.														

Unit 04: ROBOT PROGRAMMING 9 Hours										
Methods of Robot Programming: Lead through methods, Textual robot Languages – Robot language structure – First generation Languages – Second generation Languages – VAL Programming – Simple Programming examples.										
Unit 05: ROBOT APPLICATIONS 9 Hours										
Robotics Applications in Manufacturing: Welding Robot, AGVs– Healthcare: Surgery Robot, Therapeutic Robot – Agriculture: Crop Harvesting & Fruit Picking Robot – Defence & Space: Exoskeleton Robot, Telerobotics.										
Theory: 45 Hrs	Tutorial:	Practical:	Total Hou	ırs: 45 Hrs						
TEXT BOOKS										
3. M.P.Groover, M.Wei Applications'' Tata M	ss,R.N. Nagal,N. lcGraw-Hill Publi	G.Odrey, "Industrial Robotics cation, 2012.	- Technology, pr	ogramming and						
REFERENCES										
7. Richard D.Klafter, "F	Robotics Engineer	ing" PHI Learning Private Lir	nited, 2009.							
8. Ganesh S.Hedge, "A	text book in Indus	strial Robotics", Laxmi Public	ations, 2006.							
9. S K Saha, "Introduction to Robotics", Tata McGraw-Hill Publication, 2012.										
10 Sathya Ranjan Deb, " Hill Publication, 2009	10 Sathya Ranjan Deb, "Robotics Technology & flexible Automation" Second edition, Tata McGraw- Hill Publication, 2009.									

## Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VII under Regulations 2019 Branch: Mechatronics Engineering

								Total
S. No	Course Code		<b>Course Title</b>	Lecture	Tutorial	Practical	Credit	Contact
			ļ.					Hours
	<b>.</b>		Theory			-	н	
1	U19GE701 🖊	Profession	al Ethics and Human Values 🖌	3 /	0	0	3 /	45
2	U19MC701 /	Total Qua	ity Management 🖌	3 🗸	0	0	3 🖉	45
3	U19MC702 🧹	Robot Pro	gramming and Applications	3 /	0	0	3 🖌	45
4	U19MC909	Profession	al Elective - Agriculture Automation	3	0	0	3	45
5	U19MC922	Profession	al Elective - Automotive Mechatronics	3	0	0	3	45
	U19BM1002 🖉		Basic Life Support 🖊					
	U19CE1001 /		Building Services and Safety Regulations 🖌	1	10			
	U19CE1004 <		Disaster Management /				×	
	U19CS1002 /		Cloud Computing 🖌					
	U19CS1003 /		Internet of Things /			а.	*	
6	U19EC1006 /	Open	Mobile Technology and Its Applications /	2/	0	0	2	15
	U19EC1007 /	Elective	CMOS VLSI Design /		0	0	3	TJ /
	U19EE1003		Innovation, IPR and Entrepreneurship					
			Development				5	
	U19EE1004 /	×	Renewable Energy Systems 🥒					
- <del>1</del>	U19FT1001 🗸		Fundamentals of Fashion Design /		7	9		
	U19ME1002		Industrial Safety	-				

05.07.2023

R26

**Regulations-2019** 

ME

	U19ME1004	Renewable Energy So	urces					
			Practical					
7	U19MC703 / Robo	otics Laboratory /		0	0	3	1.5	45 /
8	U19MC704 / Mini	Project-III /		0	0	3 (	1.5	45
		Total C	Credits		×		21	360

**Approved By** 

Chairperson, Mechatronics Engineering BoS

**Dr.P.Suresh** 

Mivallurar

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to: -

HOD/ Mechatronics Engineering, Seventh Semester B.E MCT Students and Staff, COE

05.07.2023

**Regulations-2019** 

														12 A		
T	110CF7	/01		PRO	FESS	IONAL E	ETHICS	S AND		L	L T P C					
	J19GL/	01			HU	MAN VA	ALUES			3	0		0	3		
Cours	e Outco	omes		Segon kar	1 1.245	e en eller					· .					
After	success	ful com	pletion	of this	cours	e, the stu	dents s	hould	be able	to	4	9) 2)				
C01	: Id	entify th	e core v	alues t	hat sh	ape the e	thical b	ehavior	of an e	engineer	r Bragert	8 2 2 1				
CO2	2: A1	nalyze ar	nd prac	tice eng	ineeri	ng ethics	in thei	r profes	sion.							
CO3	3: Aj	oply cod	es of etl	hics in t	he co	ntext of s	ocial ex	perime	ntation	•	o da est					
CO4	l: Ex	plore va	rious sa	afety iss	sues a	nd ethica	l respoi	nsibiliti	es of an	engine	er.		18 °. 1	281 J. 41		
COS	5: Adopt ethical practices pertaining to global issues.															
Pre-re	quisite	1					1		Let - Jac-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e e fil Fac			2		
	NI	L		24 . • X	ên le				le car i i i i i							
		(3	/2/1 inc	licates s	streng	CO/PO, th of corr	PSO M elation	apping) 3-Stro	5 ng, 2-M	ledium,	1-Weak	¢				
COs			Progra	mme O	utcom	nes (POs)	and Pr	ogramn	ne Spec	ific Out	come (F	'SOs)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2		
CO1	2	1	1	1	1	2	3	3	3	2	2	3	2	2		
CO2	2	1	1	1	2	2	3	3	3	3	3	3	2	2		
CO3	2	1	3	1	2	3	3	3	3	3	3	3	2	2		
CO4	2	1	3	1	1	3	3	3	3	2	3	3	2	2		
CO5	2	1	3	1	1	3	3	3	3	3	3	3	2	2		
			je vi		Co	ourse Ass	essmer	nt meth	ods				1.4			
	Destanting and the second			I	Direct							Indir	ect			
Internal test I (8)Objective test (6)Internal test II (8)Attendance (5)Internal test III (8)End semester Examination (60)Assignment/seminar/Quiz (5)Course end survey																
Unit (	)1: HUN	MAN VA	ALUES	d este		va je je					und "		9 Hor	ırs		
Moral Living Empa	ls, Valu g Peace tthy – S	es and E fully – C elf-Conf	thics – Caring – idence	Integrit Sharin - Chara	y – W g – Ho acter -	ork Ethic onesty – ( - Introdu	ction to	vice Lea e – Valu o Yoga	arning - uing Ti and me	- Civic V me – Co editation	/irtue – -operat for pr	Respection – C	et for Of ommite nal exce	hers – nent – ellence		

and stress management.

	2: ENGINEERING EI	HICS			9 Hours
Sense	es of Engineering Eth	ics – Variety of m	noral issues - Types of inqu	iry – Moral Dile	emmas – Mora
Auto	nomy – Kohlberg's t	heory – Gilligan'	's theory - Consensus and	Controversy -	Profession and
Profe	ssionalism – Professio	onal Ideals and Vi	irtues -Theories of Right act	ion- Self Interest	t- Customs and
Relig	ion-Uses of Ethical The	eories.			
Unit (	3: ENGINEERING AS	S SOCIAL EXPER	IMENTATION	the state of the	9 Hours
Engir	neering as Experimen	ntation – Contras	sts with standard experime	nts- Engineers	as Responsible
Expe	rimenters – Importanc	e and limitations o	of Codes of Ethics - Industrial	Standards - A Ba	lanced Outlook
on La	w – Industrial Standa	ds- Case Study: Sp	pace shuttle challenger disaste	er.	
Unit (	4: SAFETY, RESPON	SIBILITIES AND	RIGHTS	2 1 0 E 1 1	9 Hours
Safet	y and Risk – Types of	risk - Assessmen	t of Safety and Risk – Risk E	Benefit analysis-F	Reducing Risk -
Case	Studies - Chernobyl ar	nd Bhopal plant dis	saster.		
Colle	giality and Loyalty _	Respect for Author	arity Collective Bargaining	Confidentiality	Conflicto of
Inter	est - Occupational Cri	me – Importance	and consequences of whistle	blowing Profe	- Connects of
Empl	ovee Rights - Intellect	1al Property Right	s (IPR) and its components.	Discrimination	ssional Rights -
Emp	oyee lagins inteneet	and topenty Right	s (II K) and its components- I	Jisci illillitation.	
Tait	E. CLODAL ICCLIEC				0.11
Unit (	5: GLOBAL ISSUES				9 Hours
Unit ( Multi	5: GLOBAL ISSUES	s – Environmen	ntal Ethics – Computer E	thics and Inte	9 Hours rnet- Weapons
Unit ( Multi Deve	5: GLOBAL ISSUES inational Corporation lopment – Engineers	s – Environmen as Managers – C	ntal Ethics – Computer E Consulting Engineers – Engi	thics and Interneers as Expert	9 Hours rnet- Weapons Witnesses and
Unit ( Multi Deve Advi	5: GLOBAL ISSUES inational Corporation lopment – Engineers sors – Moral Leadersh	s – Environmen as Managers – C ip – Participation i	ntal Ethics – Computer E Consulting Engineers – Engi n professional societies- –Coc	thics and Interneers as Expert le of Conduct – C	9 Hours rnet- Weapons Witnesses and Corporate Social
Unit ( Multi Deve Advi Respo	5: GLOBAL ISSUES inational Corporation lopment – Engineers sors – Moral Leadersh onsibility.	s – Environmen as Managers – C ip – Participation i	ntal Ethics – Computer E Consulting Engineers – Engi n professional societies- –Coc	thics and Interneers as Expert le of Conduct – C	9 Hours rnet- Weapons Witnesses and Corporate Social
Unit ( Multi Deve Advi Respo	5: GLOBAL ISSUES inational Corporation lopment – Engineers sors – Moral Leadersh onsibility. Theory: 45 Hrs	s – Environmen as Managers – C ip – Participation i Tutorial:	ntal Ethics – Computer E Consulting Engineers – Engi n professional societies- –Coc <b>Practical:</b>	thics and Interneers as Expert le of Conduct – C Total Hou	9 Hours rnet- Weapons Witnesses and Corporate Social rs: 45 Hrs
Unit ( Multi Deve Advi Respo TEXT	5: GLOBAL ISSUES inational Corporation lopment – Engineers sors – Moral Leadershi onsibility. Theory: 45 Hrs F BOOKS	s – Environmen as Managers – C ip – Participation i Tutorial:	ntal Ethics – Computer E Consulting Engineers – Engi n professional societies- –Coc <b>Practical:</b>	thics and Interneers as Expert le of Conduct – C Total Hou	9 Hours rnet- Weapons Witnesses and Corporate Social rs: 45 Hrs
Unit ( Multi Deve Advi Respo TEXT	<ul> <li>D5: GLOBAL ISSUES</li> <li>inational Corporation</li> <li>lopment – Engineers</li> <li>sors – Moral Leadership</li> <li>consibility.</li> <li>Theory: 45 Hrs</li> <li>TBOOKS</li> <li>Mike Martin and Rol</li> </ul>	s – Environmen as Managers – C ip – Participation i <b>Tutorial:</b> and Schinzinger, "	ntal Ethics – Computer E Consulting Engineers – Engi n professional societies- –Coc <b>Practical:</b> 'Ethics in Engineering", McGi	thics and Interneers as Expert le of Conduct – C Total Hou raw Hill, Indian F	9 Hours rnet- Weapons Witnesses and Corporate Social rs: 45 Hrs Edition, Tenth
Unit ( Multi Deve Advi Respo TEXT	<ul> <li>D5: GLOBAL ISSUES</li> <li>inational Corporation</li> <li>lopment – Engineers</li> <li>sors – Moral Leadership</li> <li>consibility.</li> <li>Theory: 45 Hrs</li> <li>TBOOKS</li> <li>Mike Martin and Rold</li> <li>reprint, 2017.</li> </ul>	s – Environmen as Managers – C ip – Participation i Tutorial: and Schinzinger, "	ntal Ethics – Computer E Consulting Engineers – Engi n professional societies- –Coc <b>Practical:</b> 'Ethics in Engineering", McGi	thics and Interneers as Expert le of Conduct – C Total Hou raw Hill, Indian H	9 Hours rnet- Weapons Witnesses and Corporate Social rs: 45 Hrs Edition, Tenth
Unit ( Multi Deve Advi Respo TEXT 1.	<ul> <li>5: GLOBAL ISSUES</li> <li>inational Corporation</li> <li>lopment – Engineers</li> <li>sors – Moral Leadership</li> <li>consibility.</li> <li>Theory: 45 Hrs</li> <li>TBOOKS</li> <li>Mike Martin and Role</li> <li>reprint, 2017.</li> <li>Professional Ethics at</li> </ul>	is – Environmen as Managers – C ip – Participation i Tutorial: and Schinzinger, " nd Human values-	ntal Ethics – Computer E Consulting Engineers – Engi n professional societies- –Coc <b>Practical:</b> 'Ethics in Engineering'', McGr - Sonaversity, Edition 2018.	thics and Interneers as Expert le of Conduct – C Total Hou raw Hill, Indian H	9 Hours rnet- Weapons Witnesses and Corporate Social rs: 45 Hrs Edition, Tenth
Unit ( Multi Deve Advi Respo TEXT 1. 2. REFE	<ul> <li>D5: GLOBAL ISSUES</li> <li>inational Corporation</li> <li>lopment – Engineers</li> <li>sors – Moral Leadership</li> <li>consibility.</li> <li>Theory: 45 Hrs</li> <li>TBOOKS</li> <li>Mike Martin and Role</li> <li>reprint, 2017.</li> <li>Professional Ethics at</li> <li>CRENCES</li> </ul>	is – Environmen as Managers – C ip – Participation i Tutorial: and Schinzinger, " nd Human values-	ntal Ethics – Computer E Consulting Engineers – Engi n professional societies- –Coc Practical: 'Ethics in Engineering'', McGr - Sonaversity, Edition 2018.	thics and Interneers as Expert le of Conduct – C Total Hou raw Hill, Indian H	9 Hours rnet- Weapons Witnesses and Corporate Social rs: 45 Hrs Edition, Tenth
Unit ( Multi Deve Advia Respo TEXT 1. 2. REFE	<ul> <li>D5: GLOBAL ISSUES</li> <li>inational Corporation</li> <li>lopment – Engineers</li> <li>sors – Moral Leadership</li> <li>consibility.</li> <li>Theory: 45 Hrs</li> <li>TBOOKS</li> <li>Mike Martin and Role</li> <li>reprint, 2017.</li> <li>Professional Ethics and</li> <li>RENCES</li> <li>Charles D Fledderma</li> </ul>	s – Environmen as Managers – C ip – Participation i Tutorial: and Schinzinger, " nd Human values-	ntal Ethics – Computer E Consulting Engineers – Engi n professional societies- –Coc Practical: 'Ethics in Engineering", McGr - Sonaversity, Edition 2018. Ethics", Prentice Hall, New M	thics and Interneers as Expert le of Conduct – C Total Hou raw Hill, Indian H	9 Hours rnet- Weapons Witnesses and Corporate Social rs: 45 Hrs Edition, Tenth
Unit ( Multi Deve Advi Respo TEXT 1. 2. REFE	<ul> <li>D5: GLOBAL ISSUES</li> <li>inational Corporation</li> <li>lopment – Engineers</li> <li>sors – Moral Leadership</li> <li>consibility.</li> <li>Theory: 45 Hrs</li> <li>TBOOKS</li> <li>Mike Martin and Role</li> <li>reprint, 2017.</li> <li>Professional Ethics at</li> <li><b>RENCES</b></li> <li>Charles D Fleddermatic</li> </ul>	s – Environmen as Managers – C ip – Participation i Tutorial: and Schinzinger, " nd Human values-	ntal Ethics – Computer E Consulting Engineers – Engi n professional societies- –Coc Practical: 'Ethics in Engineering", McGr - Sonaversity, Edition 2018. Ethics", Prentice Hall, New M	thics and Interneers as Expert le of Conduct – C Total Hou raw Hill, Indian H	9 Hours rnet- Weapons Witnesses and Corporate Social rs: 45 Hrs Edition, Tenth
Unit ( Multi Deve Advi Respo TEXT 1. 2. REFE 1. 2.	<ul> <li>D5: GLOBAL ISSUES</li> <li>inational Corporation</li> <li>lopment – Engineers</li> <li>sors – Moral Leadership</li> <li>consibility.</li> <li>Theory: 45 Hrs</li> <li>TBOOKS</li> <li>Mike Martin and Role</li> <li>reprint, 2017.</li> <li>Professional Ethics at</li> <li><b>RENCES</b></li> <li>Charles D Fleddermat</li> <li>Govindarajan M, Nate</li> <li>Delhi, 2016.</li> </ul>	s – Environmen as Managers – C ip – Participation i Tutorial: and Schinzinger, " nd Human values- ann, "Engineering tarajan S, Senthil K	ntal Ethics – Computer E Consulting Engineers – Engin n professional societies- –Coc Practical: 'Ethics in Engineering", McGr Sonaversity, Edition 2018. Ethics", Prentice Hall, New M Cumar V. S, "Engineering Ethi	thics and Interneers as Expert le of Conduct – C Total Hou raw Hill, Indian H fexico, 2012. cs″, Prentice Hal	9 Hours rnet- Weapons Witnesses and Corporate Social rs: 45 Hrs Edition, Tenth
Unit ( Multi Deve Advi Respo TEXT 1. 2. REFE 1. 2. 3.	<ul> <li>5: GLOBAL ISSUES</li> <li>inational Corporation</li> <li>lopment – Engineers</li> <li>sors – Moral Leadership</li> <li>consibility.</li> <li>Theory: 45 Hrs</li> <li>TBOOKS</li> <li>Mike Martin and Role</li> <li>reprint, 2017.</li> <li>Professional Ethics at</li> <li>Charles D Fleddermat</li> <li>Govindarajan M, Nat</li> <li>Delhi, 2016.</li> <li>Charles E Harris, Mite</li> </ul>	s – Environmen as Managers – C ip – Participation i Tutorial: and Schinzinger, " nd Human values- ann, "Engineering tarajan S, Senthil K	ntal Ethics – Computer E Consulting Engineers – Engi n professional societies- –Coc Practical: 'Ethics in Engineering", McGr - Sonaversity, Edition 2018. Ethics", Prentice Hall, New M Cumar V. S, "Engineering Ethi nd Michael J Rabins, "Engineering	thics and Interneers as Expert le of Conduct – C Total Hou raw Hill, Indian H fexico, 2012. cs", Prentice Hal ering Ethics – Co	9 Hours rnet- Weapons Witnesses and Corporate Social rs: 45 Hrs Edition, Tenth I of India, New ncepts and
Unit ( Multi Deve Advi Respo TEXT 1. 2. REFE 1. 2. 3.	<ul> <li>5: GLOBAL ISSUES</li> <li>inational Corporation</li> <li>lopment – Engineers</li> <li>sors – Moral Leadership</li> <li>consibility.</li> <li>Theory: 45 Hrs</li> <li>TBOOKS</li> <li>Mike Martin and Role</li> <li>reprint, 2017.</li> <li>Professional Ethics at</li> <li>RENCES</li> <li>Charles D Fleddermat</li> <li>Govindarajan M, Nat</li> <li>Delhi, 2016.</li> <li>Charles E Harris, Mit</li> <li>Cases", Cengage Leader</li> </ul>	s – Environmen as Managers – C ip – Participation i Tutorial: and Schinzinger, " nd Human values- ann, "Engineering tarajan S, Senthil K chael S Pritchard a rning, 2009.	ntal Ethics – Computer E Consulting Engineers – Engi n professional societies- –Coc Practical: 'Ethics in Engineering", McGr Sonaversity, Edition 2018. Ethics", Prentice Hall, New M Cumar V. S, "Engineering Ethi nd Michael J Rabins, "Engineering	thics and Interneers as Expert le of Conduct – C Total Hou raw Hill, Indian H fexico, 2012. cs", Prentice Hal ering Ethics – Co	9 Hours rnet- Weapons Witnesses and Corporate Social rs: 45 Hrs Edition, Tenth I of India, New ncepts and

Dr. P. SURESH Professor and Head Department of Mechatronics Engineering SONA COLLEGE OF TECHNOLOGY Junction Main Road, SALEM - 636 55. Ph:0427-4099999 Regulation: 2019

B.E: Mechatronics Engineering

$\begin{tabular}{ c c c c c } \hline I & T & P & C \\ \hline 3 & 0 & 0 & 3 \\ \hline 3 & 0 & 0 & 3 \\ \hline 3 & 0 & 0 & 3 \\ \hline 3 & 0 & 0 & 3 \\ \hline 3 & 0 & 0 & 3 \\ \hline 3 & 0 & 0 & 3 \\ \hline 3 & 0 & 0 & 3 \\ \hline 3 & 0 & 0 & 3 \\ \hline 3 & 0 & 0 & 3 \\ \hline 3 & 0 & 0 & 3 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	- C																
Course Outcomes       3       0       0       3         Course Outcomes         Course Outcomes for this course, the students should be able to         Course Outcomes for the course of the source	U19MC701 TOTAL					TAL (	JUALI	TYM	ANAGE	MENT	<b>-</b>	L	Т	Р	C		
Course Outcomes         Course Outcomes         Ifter successful completion of this course, the students should be able to         CO1:       Outline the Dimensions and Barriers regarding with Quality.         CO2:       Discuss the TQM Principles and quality improvement teams.         CO3:       Justify the concept of Six Sigma and four levels of benchmarking.         CO4:       Explain the various types of Techniques are used to measure Quality.         CO5:       Apply various Quality Systems and Auditing on implementation of TQM.         YPTOGROME TO CO/PO PSO Mapping         CO/PO, PSO Mapping         CO/PO. PSO PO3       PO6       PO7       PO8       PO9       PO1       PO2       PO3       PO6       PO7       PO8       PO9       PO1       PO2       PO3       PO6       PO7       PO8       PO1       PO2       PO3       PO1       PO2       PO2         Course Assessment methods       Course Assessment methods        Course Assess	Ŭ	191110		i Gerani I Gerani		,	201121				i diana an Ang ang ang ang ang ang ang ang ang ang a	3	0	0	3		
After successful completion of this course, the students should be able to           Outline the Dimensions and Barriers regarding with Quality.           CO2:         Discuss the TQM Principles and quality improvement teams.           CO3:         Justify the concept of Six Sigma and four levels of benchmarking.           CO4:         Explain the various types of Techniques are used to measure Quality.           CO4:         Apply various Quality Systems and Auditing on implementation of TQM.           '''''''''''''''''''''''''''''''''''	Cours	se Outo	comes														
C01:         Outline the Dimensions and Barriers regarding with Quality.           C02:         Discuss the TQM Principles and quality improvement teams.           C03:         Justify the concept of Six Sigma and four levels of benchmarking.           C04:         Explain the various types of Techniques are used to measure Quality.           C05:         Apply various Quality Systems and Auditing on implementation of TQM.           're-requisite	After	succes	sful co	mplet	ion of	this co	urse, t	he stuc	lents sh	ould b	e able to						
Discuss the TQM Principles and quality improvement teams.         Justify the concept of Six Sigma and four levels of benchmarking.         CO4:       Explain the various types of Techniques are used to measure Quality.         CO4:       Explain the various types of Techniques are used to measure Quality.         CO4:       Explain the various types of Techniques are used to measure Quality.         Total apply various Quality Systems and Auditing on implementation of TQM.         Preferequisite         NIL         CO/PO, PSO Mapping         (3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak         CO/PO       Programme Outcomes (POs) and Programme Specific Outcome (PSOs)         Corregramme Ou	CO1:	Ou	tline tł	ne Dim	ension	is and I	Barrier	s regar	ding wit	h Qua	lity.						
Justify the concept of Six Sigma and four levels of benchmarking.         CO3:       Justify the concept of Six Sigma and four levels of benchmarking.         CO4:       Explain the various types of Techniques are used to measure Quality.         CO5:       Apply various Quality Systems and Auditing on implementation of TQM.         Tre-requisite         NIL         CO/PO, PSO Mapping         (3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak         Torgramme Outcomes (POs) and Programme Specific Outcome (PSOs)         O1       901       PO1       PO12       PSO1       PSO2         O2       3       3       9       9       PO10       PO11       PO12       PSO1       PSO2         O1       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3	CO2:	Dis	scuss tł	ne TQN	A Princ	ciples a	nd qua	ality in	provem	ent tea	ams.	yerria y Siyar		13 jest or tot			
Explain the various types of Techniques are used to measure Quality.           CO6:         Apply various Quality Systems and Auditing on implementation of TQM.           Pre-requisite         Various Quality Systems and Auditing on implementation of TQM.           Pre-requisite         Various Quality Systems and Auditing on implementation of TQM.           Pre-requisite         CO/PO, PSO Mapping (3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak           OS         Programme Outcomes (POs) and Programme Specific Outcome (PSOs)           OS         PO1          PO1 <th <="" colspan="2" td=""><td>CO3:</td><td>Jus</td><td>tify the</td><td>e conce</td><td>ept of S</td><td>Six Sign</td><td>na and</td><td>four le</td><td>evels of h</td><td>penchn</td><td>narking.</td><td></td><td>2 1</td><td></td><td></td></th>	<td>CO3:</td> <td>Jus</td> <td>tify the</td> <td>e conce</td> <td>ept of S</td> <td>Six Sign</td> <td>na and</td> <td>four le</td> <td>evels of h</td> <td>penchn</td> <td>narking.</td> <td></td> <td>2 1</td> <td></td> <td></td>		CO3:	Jus	tify the	e conce	ept of S	Six Sign	na and	four le	evels of h	penchn	narking.		2 1		
OD5:       Apply various Quality Systems and Auditing on implementation of TQM.         Tre-requisite         NIL       CO/PO, PSO Mapping         CO/PO, PO2       Programme Outcomes (POs) and Programme Specific Outcome (PSOs)         Po1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PSO1       PSO2         201       3       3       0       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3	CO4:	Exj	plain tl	ne vari	ous ty	pes of 7	Геchnic	ques ar	e used to	o meas	sure Qual	ity.					
re-requisite         CO/PO, PSO Mapping         (3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak         Programme Outcomes (POs) and Programme Specific Outcome (PSOs)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       P09       PO10       PO11       PO12       PSO1       PSO2         201       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       <	CO5:	5: Apply various Quality Systems and Auditing on implementation of TQM.															
CO/PO, PSO Mapping (3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak           Programme Outcomes (POs) and Programme Specific Outcome (PSOs)           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PSO1         PSO2           201         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	Pre-re	equisit	uisite														
CO/PO, PSO Mapping (3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-WeakProgramme Outcomes (POs) and Programme Specific Outcome (PSOs)PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PSO1PSO220133333333332023333333333203333333333204333333333205323333333Course Assessment methodsDirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectObjective test (6)Attendance (5)End Semester Examination (60)Attendance (5)Init 01: INTRODUCTIONPHoursObjective test (6)Attendance (5)End Semester Examination (60)Assignment/Seminar/Quiz (5)PHOUSPHOUSObjective test (6)Attendance (5)End Semester Examination (60) <td>N</td> <td>IL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>hady, is</td> <td>en jar dig</td> <td>a that a start of the</td> <td></td> <td></td> <td></td> <td></td>	N	IL							hady, is	en jar dig	a that a start of the						
(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak  Programme Outcomes (POs) and Programme Specific Outcome (PSOs)           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PSO1         PSO2           201         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3						-	CO	/PO, P	SO Mar	ping							
Programme Outcomes (POs) and Programme Specific Outcome (PSOs)PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PSO1PSO2201333333333333202333333333332033333333332043333333333205323331111333205323331111133320532333111113332053233311111333205323331111113332053233311111133206323331111111111111111111111111111				(3/2/1	indica	tes stre	ength o	f corre	lation) 3	-Strong	g, 2-Medi	um, 1-W	/eak				
PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02           201         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	COs			F	rogran	nme Ou	tcomes	(POs) a	and Prog	ramme	Specific C	utcome (	(PSOs)	e de la composition de la comp			
CO1       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2		
CO2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3	CO1	3	3		3	· · · · · · · · · · · · · · · · · · ·			3	3			3	3	3		
CO3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3	CO2		3	3	3			3	3					3	3		
CO4       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3	CO3			3	3		3		3	3			3	3	3		
CO5       3       2       3       3       3       3       3       3         Course Assessment methods         Direct       Indirect         Indirect         nternal test I (8)       Objective test (6)         Attendance (5)       Course end survey         Indirect         Mathematical test II (8)       Attendance (5)         Assignment/Seminar/Quiz (5)       Phours         Init 01: INTRODUCTION       9 Hours         ntroduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby       Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints         Customer retention.         Init 02: TQM PRINCIPLES       9 Hours         Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement	CO4	3	3	3		3								3	3		
Course Assessment methods         Indirect         Indirect         Indirect         Objective test (6)         Internal test II (8)       Attendance (5)       Course end survey         Init 01: INTRODUCTION       9 Hours       9 Hours         Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and ervice quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints         Customer retention.         Init 02: TQM PRINCIPLES       9 Hours         Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement	CO5	3	2	3		3					<u> </u>			- 3	3		
Direct       Indirect         nternal test I (8)       Objective test (6)         nternal test II (8)       Attendance (5)         nternal test III (8)       End Semester Examination (60)         Assignment/Seminar/Quiz (5)       Phours         Init 01: INTRODUCTION       9 Hours         Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and ervice quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints         Customer retention.       9 Hours         Init 02: TQM PRINCIPLES       9 Hours         Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement							Cours	e Asse	ssment	netho	ds	1	<u> </u>	••			
Internal test I (8)       Objective test (6)         Internal test II (8)       Attendance (5)         Internal test III (8)       End Semester Examination (60)         Assignment/Seminar/Quiz (5)       Phours         Init 01: INTRODUCTION       9 Hours         Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and ervice quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints         Customer retention.       9 Hours         Init 02: TQM PRINCIPLES       9 Hours         Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement					1	Dire	ect						Inc	lirect			
Internal test II (8)       Attendance (5)       Course end survey         Assignment/Seminar/Quiz (5)       End Semester Examination (60)       9 Hours         Init 01: INTRODUCTION       9 Hours         Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and ervice quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby       9 Hours         Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints       9 Hours         Customer retention.       9 Hours         Init 02: TQM PRINCIPLES       9 Hours         Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement	Interr	nal test	I (8)				Objec	ctive te	st (6)								
Internal test III (8)       End Semester Examination (60)         Assignment/Seminar/Quiz (5)       9 Hours         Init 01: INTRODUCTION       9 Hours         Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints Customer retention.         Init 02: TQM PRINCIPLES       9 Hours         Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement	Interr	nal test	II (8)				Atter	Idance	(5)				Course	end surv	ev		
Assignment/Seminar/Quiz (5)       9 Hours         Init 01: INTRODUCTION       9 Hours         Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and cervice quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby       9 Hours         Sarriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints       9 Hours         Init 02: TQM PRINCIPLES       9 Hours         Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement	Intern	nal test	III (8)				End S	Semest	er Exam	inatior	n (60)				5		
Init 01: INTRODUCTION       9 Hours         Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby         Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints         Customer retention.         Init 02: TQM PRINCIPLES       9 Hours         Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement	Assig	nment	/Semir	ar/Qu	iz (5)												
Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and ervice quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints Customer retention. Init 02: TQM PRINCIPLES 9 Hours Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement	Unit (	1: INT	RODU	JCTIO	N									9 H	ours		
Service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints Customer retention. Init 02: TQM PRINCIPLES Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement	Intro	duction	n - Nee	d for c	uality	- Evol	ution c	of quali	ty - Def	nition	s of quali	ty - Din	nensions	s of prod	luct and		
Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints Customer retention. Init 02: TQM PRINCIPLES 9 Hours Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement	servio	e qual	ity - Ba	asic con	ncepts	of TQI	M - TQ	M Fran	nework	- Cont	ributions	of Dem	ing, Jur	an and (	Crosby		
Customer retention.       9 Hours         Init 02: TQM PRINCIPLES       9 Hours         Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement	Barrie	ers to '	ГQM -	Custo	mer fo	ocus -	Custor	ner ori	entation	, Cust	omer sati	sfaction	, Custo	mer con	nplaints		
Jnit 02: TQM PRINCIPLES         9 Hours           _eadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement	Custo	omer re	etention	n.													
Leadership: Quality Statements, Strategic quality planning, Quality Councils - Employee involvement	Unit (	2: TQ	M PRI	NCIPL	ES				ş			an air an		9 H	ours		
$\mathbf{r} \sim \mathbf{r}$	Lead	ership:	Ouali	ty Stat	ement	s, Stra	tegic a	uality	plannin	g, Oua	ality Cou	ncils - 1	Employ	ee invol	vement		
Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal	Motiv	vation.	Empo	werm	ent, To	eam ar	nd Tea	mworl	k, Recog	nition	and Re	ward, P	erforma	ince app	praisal		
Continuous process improvement: PDCA cycle, 5S, Kaizen - Supplier partnership: Partnering, Supplie	Conti	nuous	proce	ss imp	rovem	ent: Pl	DCA c	ycle, 5	S, Kaize	n - Su	pplier pa	rtnersh	ip: Part	nering, S	Supplie		

selection, Supplier Rating.

Unit 03: TQM PRACTICES 9 Hours											
The se	even traditional too	ols of quality - N	ew management tools - S	ix sigma: Concepts, Methodolog							
applica	ations to manufactu	iring, service secto	or including IT - Bench man	king: Reason to bench mark, Ben							
markir	ng process – FMEA:	Stages, Types.		2011년 1월 1999년 28일에서 1997년 - 1997년 1월 1 1997년 - 1997년 1월 1997							
Unit 04: TQM TOOLS AND TECHNIQUES 9 Hours											
Qualit	y Circles - Cost of	Quality - Quality	Function Deployment (QF	D) - Taguchi quality loss function							
TPM: 0	Concepts, improven	nent needs - Perfor	rmance measures.								
Unit 05	: QUALITY SYSTE	EMS		9 Hours							
Need f	for ISO 9000 - ISO 90	001-2008 - Quality	System: Elements, Docume	entation, Quality Auditing - QS 90							
- ISO 1	14000: Concepts, Re	equirements and B	Benefits - TQM Implement	ation in manufacturing and servi							
sectors.											
Theory: 45 Hrs Tutorial: Practical: Total Hours: 45 Hrs											
Theory	y: 45 Hrs	Tutorial:	Practical:	Total Hours: 45 Hrs							
Theory TEXT	y: 45 Hrs BOOKS	Tutorial:	Practical:	Total Hours: 45 Hrs							
Theory TEXT	y: 45 Hrs BOOKS Dale H.Besterfiled	Tutorial: d et al, "Total Qu	Practical:	Total Hours: 45 Hrs son Education Asia, Revised Thin							
Theory TEXT 1.	y: <b>45 Hrs</b> <b>BOOKS</b> Dale H.Besterfiled Edition, Indian Re	Tutorial: d et al, "Total Qu eprint, Sixth Impre	Practical: nality Management", Pears	Total Hours: 45 Hrs							
Theory TEXT 1. REFER	y: 45 Hrs BOOKS Dale H.Besterfiled Edition, Indian Re RENCES	<b>Tutorial:</b> d et al, "Total Qu eprint, Sixth Impre	Practical: nality Management", Pears ession, 2013.	Total Hours: 45 Hrs							
Theory TEXT 1. REFER	y: 45 Hrs BOOKS Dale H.Besterfiled Edition, Indian Re RENCES James R. Evans an	Tutorial: d et al, "Total Qu eprint, Sixth Impre nd William M. Lin	Practical: nality Management", Pears ession, 2013.	Total Hours: 45 Hrs son Education Asia, Revised Thir nd Control of Quality", 8th Editio							
Theory TEXT 1. REFER 1.	y: 45 Hrs BOOKS Dale H.Besterfiled Edition, Indian Re RENCES James R. Evans an First Indian Editio	Tutorial: d et al, "Total Qu eprint, Sixth Impre nd William M. Lin on, Cengage Learni	Practical: nality Management", Pears ession, 2013. ndsay, "The Management a ing, 2012.	Total Hours: 45 Hrs son Education Asia, Revised Thin nd Control of Quality", 8th Editio							
Theory TEXT 1. REFER 1. 2.	y: 45 Hrs BOOKS Dale H.Besterfiled Edition, Indian Re RENCES James R. Evans an First Indian Edition Suganthi.L and A	Tutorial: d et al, "Total Que eprint, Sixth Impre nd William M. Lin on, Cengage Learni nand Samuel, "Tot	Practical: nality Management", Pears ession, 2013. Indsay, "The Management a ing, 2012. Tal Quality Management", F	Total Hours: 45 Hrs son Education Asia, Revised Thin nd Control of Quality", 8th Editio Prentice Hall (India) Pvt. Ltd., 2006							
Theory TEXT 1. REFER 1. 2.	y: 45 Hrs BOOKS Dale H.Besterfiled Edition, Indian Re ENCES James R. Evans an First Indian Edition Suganthi.L and A Janakiraman. B a	Tutorial: d et al, "Total Que eprint, Sixth Impre nd William M. Lin on, Cengage Learni nand Samuel, "Tot nd Gopal. R.K., "	Practical: uality Management", Pears ession, 2013. udsay, "The Management a ing, 2012. cal Quality Management", F Total Quality Management	Total Hours: 45 Hrs son Education Asia, Revised Thin nd Control of Quality", 8th Editio Prentice Hall (India) Pvt. Ltd., 2006 at - Text and Cases", Prentice Ha							

Dr. P. SURESH Professor and Head

Department of Mechatronics Engineering 30NA COLLEGE OF TECHNOLOGY Junction Main Road, SALEM - 636 905. Ph:0427-4099999

τ	U19MC702 RO					r pro	GRAN	/MIN	G AN	D	L	e 18 ¹⁰	C		
		et englindelig Hendrichere				APPL	ICAT	IONS			3		0	0	3
Cour	se Ou	tcomes	e de ser est	1.1.1.1		6 20									9
After	succe	essful c	omple	etion o	f this	course	, the s	tudent	s shou	ıld be al	ble to	2			o . See
CO	1: 0	utline t	he va	rious n	nethod	s to in	npleme	ent the	robot	progran	nming		i.		
CO	<b>2:</b> II	lustrate	the d	ifferen	t meth	ods of	execu	tion of	robot	: progra	m		111		
<b>CO3:</b> Apply the VAL Language to develop robot programming for industrial applications															
CO4: Develop the RAIL and AML language for robot programming															
CO5: Apply the robot programming skills to control industrial applications															
Pre-requisite															
1.	Roł	ootics													
2.	The	eory of l	Machi	nes											
						C	O/PO,	PSO N	Mappi	ng					
· · ·		an an an the second	(3/2/2	l indica	ates sti	rength	of cor	relation	n) 3-St	rong, 2-	Mediu	n, 1-We	eak	1	
COs				Progra	mme O	utcome	es (POs	) and P	rogran	nme Spee	cific Out	come (P	SOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	·P09	PO10	PO11	PO12	PSG	D1	PSO2
CO1	3	2	2	1	1	2	2		2	2		2	3		2
CO2	3	2	2	2	1	2	2		2	1		2	3		2
CO3	3	2	2	2	2	2	3		2	1		2	3		2
CO4	3	2	2	1	2	2	3		1	1		2	3		3
<u>CO5</u>	3	3	2		2	2	3	<u> </u>	1	1		2	3		3
						Cour	se Ass	sessme	nt me	thods					
		- (2)			Di	rect							Ine	direct	
Inter	nal tes	st I (8)			O	ojectivo	e test (	6)							
Inter	nal tes	st II (8)			At	tenda	nce (5)					Co	ourse	end su	rvev
Inter	nal tes	st III (8)	10	. (=)	Er	id sem	ester E	Examin	ation	(60)	100				5
Assig	nmer	nt/semir	nar/Qu	11z (5)		tana sa mga na mana sa mara sa	tatura paga 2000 naga natura pa					-			
Unit (	)1: IN	TROD	UCTIO	ON TC	O ROB	OT PR	OGR	AMMI	NG					9 Ho	1 <b>rs</b>
Prog	ramm	ing of	Rob	ots-Me	ethods	of I	Robot	progr	ammi	ng-Teac	h met	hod G	Genera	tion o	of Robot
prog	amm	ing lan	guage	- Robo	ot Lan	guage	struct	ure: O	perati	ng Syst	em, El	ements	and	functio	ns- High
level	comp	uter la	nguag	e- VAl	L-Macl	nine Co	ontrol	Langu	age.						
Unit	02: R(	<b>DBOT 1</b>	PROG	RAM	MING	METI	HODC	DLOGY	(					9 Ho	ırs
Robot Task function- Motion interpolation-Constant, Variables and other data objects, Robot															
specifications- Motion commands, end effectors and sensors commands-computations and operations-															
program control and subroutines-communications and data processing-monitor mode commands.															
Unit 03: VAL LANGUAGE 9 Hours															
Introduction to VAL language - Monitor commands - Hand control - Configuration control- Hand control															
- input/output control-palletizing applications using VAL, Robot welding application using VAL															
program.															

Unit 0	4: RAIL AND AML		Goldsen nations in	9 Hours						
RAIL	General description	features- Locatio	ons- Robot motion statements	- Learn Statement-I/O- Operator						
I/O ar	nd file system- progr	ram control. AML	Language-elements and fun	ctions, Statements, constants and						
varial	oles-Program control	statements- Open	rating systems, Motion, Senso	r commands-Data processing.						
Unit 0	5: REAL TIME APP	LICATION AND	PROGRAMMING	9 Hours						
Robot	ic welding: automa	ted single pass v	velding, automated multi pa	ss welding, welding robot with						
comp	uter vison VAL pr	ogram for weld	path generation-Spray pair	nting robots and programming						
metho	od-Joystick technolog	gy and tele operat	ed robots-obstacle avoidance	robot.						
7	Theory: 45Hrs	Tutorial:	Practical:	<b>Total Hours: 45 Hrs</b>						
TEXT	BOOKS									
1.	Deb. S. R. "Robotics Technology and Flexible Automation", Tata McGraw Hill publishing									
	company limited, 2	013.								
2.	Mikell. P. Groover,	"Industrial Robot	tics Technology", Programmi	ng and Applications, McGraw						
	Hill Co, 2016.	а 	$\hat{U}_{i}^{0} = \hat{U}_{i}^{0} \frac{2\pi}{3} + 1 - \frac{\pi}{3} - \frac{\pi}{3} \hat{U}_{i}^{0} - \frac{\pi}{3} \hat{U}_{i}^{0} + \frac{\pi}{3} \hat{U}_$							
REFE	RENCES	Agentia North Agentia North Agentia								
1.	Klafter. R.D, Chmie	elewski.T.A and N	loggin's, "Robot Engineering	: An Integrated Approach",						
	Prentice Hall of India Pvt. Ltd.,2011.									
2.	2. Fu .K. S, Gonzalez .R. C. & Lee .C.S.G, "Robotics Control, Sensing, Vision and Intelligence",									
	McGraw Hill Book co, 2011.									
3. Craig .J. J, "Introduction to Robotics Mechanics and Control", Addison-Wesley, 2009.										
4.	Robert J. Schilling, "Fundamentals of Robotics Analysis and Control", PHI Learning., 2009.									

Dr. P. SURESH Professor and Head Desartment of Mechatronics Engineering ONA COLLEGE OF TECHNOLOGY Connection Main Road, SALEM - 636 005: Ph:0427-4099999

B.E: Mechatronics Engineering

U	19MC7	03			RO	BOTI	CS LA	BORA	TOR	Y	Consecutive Security	L	TF	c c
18 18 18 19 		ico al: 7		tar (d.G.	ng sin di T	, e'y d	() dittaa	ié cycles		as ton	છે. પુંચ્છ	0	0 3	1.5
Course	Outco	mes								an an gana ta	134 V .			
After su	ccessf	ul com	pletion	n of th	is cou	rse, th	e stud	ents sh	ould	be abl	e to			
CO1:	A	Apply t	he fun	damer	ntals of	asser	nbly le	vel pro	gram	ming i	n robot.	111 (1997) 		
CO2:	0	Create t	he var	ious p	ath pla	nning	g techni	iques b	y brie	efing al	pout the	roboť	s enviro	onment.
CO3:	A	Analysi	s the a	pplica	tions o	f robc	ots in va	arious	indus	trial ap	plicatio	m.	a ana ang a	e esse é
Pre-requ	uisite							1 - 1997 1 - 1997						
	Robot	tics				5			23 2 2 2 2					
		(3/2,	/1 indi	cates s	( trengtl	CO/PC	D, PSO	Mapp on) 3-S	<b>ing</b> trong	, 2-Me	dium, 1-	Weak		
C			Prog	gramm	e Outco	omes (	POs) an	d Prog	amme	Specif	ic Outco	me (PS	Os)	an a
CUS	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO 11	PO12	PSO	PSO
CO1	1	3	1		3	1		2		3	3	3	2	3
ÇO2	2	3	3	3	3	2			2	3	3	3	3	2
CO3	3	3	3	3	3	3	2	3	1	3	3	3	2	3
		alar Altar Artag		art a' ca airt à l'airtea	Cou	rse A	ssessm	ent m	ethod	S		an an an a' saoiste an t-chaoltaite	i na serie Real april	
					Dire	ect							Indi	rect
CIE TES Quiz-I (S CIE TES	T-I (20 5) T-II (20	) ))				Ç F E	Quiz-II RTPS (1 End sen	(5) 0) nester ]	Exami	ination	(40)	Cou	ırse end	survey
List of E	xperin	nents							an san sa San san san san san san san san san san s	- 44 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5			and and and a second	
. Intr	oductio	on of R	obot P	rogran	nming	•			Januar					
2. Exte	ernal Ir	iput/ou	itput w	viring.	0					. Paul		<u>lagra (</u>	<u>ac 355</u>	
3. Line	ear Inte	erpolati	ion Pro	gram	ning.									
. Line	ear Inte	erpolati	on wit	h Con	tinuou	s Path	n Progr	ammir	ıg.					
. Circ	ular In	terpola	ation P	rogran	nming	•								
. Con	ditiona	al Loop	Using	; IF Sta	temen	t.								
. Con	ditiona	al Loop	using	FORI	Loop.				A					
. Prog	gramm	ing Ro	bot Pat	th Usir	ng Prec	ision	Function	on.		2				
. Prog	gramm	ing for	Pick a	nd Pla	ce wit	h TCP				ų.		-		
0. Prog	gramm	ing for	Pick a	nd Pla	ce by l	Pallet	Comm	and.						
1. Prog	gramm	ming f	or pall	etize tl	ne colo	rbox	using i	mage p	roces	sing To	echniqu	e.		
2. Prog	gramm	ming f	or pall	etize tl	ne diffe	erent	geomet	ric sha	pes.					a de las
		-										Tot	al Hour	s: 45 H
05.0	07.2023	3		Ι	3.E: Me	chatron	uics Engr	in <i>eering</i> De	Performance partme SONA ( unction	Dr. P. rofess ent of Me COLLEC	SURI or and chatronic E OF TEC oad, SAL	ESH Head S Engin CHNOLC	Regul eering OGY	lation: 20

<b>U19MC70</b>
----------------

**Course Outcomes** 

After successful completion of this course, the students should be able to								
CO1:	Identify a real time problem and develop the methods to find the solutions through a systematic approach.							
CO2:	Analyse the new techniques to obtain the optimum solution to carry out the project.							
000.								

CO3: Prepare report and present the oral demonstrations.

## CO/PO, PSO Mapping

## (3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

con				Progran	nme Ou	tcomes	(POs) a	and Prop	gramme	Specific	Outcom	e (PSOs	)	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	2	2	2	2	2	1	1	3	2
CO2	3	3	3	3	3	2	2	2	2	2	3	3	3	2
CO3	3	2	2	2	2	2	3	3	3	3	1	1	3	2

### **Course Assessment methods**

	Indirect				
Review- I (10 marks)	End semester Examination (60 marks)	Course end survey			
Review- II (10 marks)					
Review- III (10 marks)					
Project report (10 marks)					
1 The students formed	inter a transformer to a state of the state				

 The students formed into a team of convenient groups of not more than 3 members on a project are not allowed to change their team members.

- Every project team should report to their faculty guide for discussion from the day of beginning of 7th semester.
- 3. The group has to analyze the selected problem addressed in their project work to draw solution.
- 4. A project report has to be submitted by each student group at the end of the 7th semester.
- 5. Three reviews have to be conducted by a team of faculty (minimum of 1 and maximum of 2) along with their faculty guide as a member of faculty team (for monitoring the progress of project planning and implementation).

**Total Hours: 45 Hrs** 

Professor and Head **Department of Mechatronics Engineering** SONA COLLEGE OF TECHNOLOGY Junction Main Road, SALEM - 636 205. Ph:0427-4099999

05.07.2023

B.E: Mechatronics Engineering

U1	9MC9	09		AG	RICUL	TURE	AUTC	MAT	ION		L	Т	Р	C
											3	0	0	3
Course	e Outco	mes								100		1		3 ¹ 21 10
After s	success	ful con	npletio	n of t	his cou	rse, th	e stud	ents sh	ould b	e able to	)	. ^{10²-1}	51 1	
CO1:	Expl	ain the	basic	princi	ple of s	mart a	gricult	ure			1 447.2 1 447.2			
CO2:	Dem	ionstra	te vario	ous Se	ensors a	nd act	uators	for far	ming t	ools	11 I. K.		2 m	9 Q 1. 9 .
CO3:	Illus	trate th	ne Teler	netry	and Pla	ant hea	lth mo	nitorii	ng used	d in Agri	culture	automa	tion	
CO4:	Con	struct t	he adv	anced	techno	logies	for sm	art far	ming		ej x Bo e			2 2 1 2
CO5:	Dev	elop a 1	machin	e for	smart ir	rigatic	on syste	em		1 8 8 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80 00 00 00 	0	ध्यात्र विद्यालय सं	e g zi
Pre-ree	quisite												6 ¹ 07	ĝo s
	1. Ser	nsors a	nd Inst	rume	ntation				8 1					
						CO/F	PO, PS	O Map	ping		·	7-1 (P)		
		(3	3/2/1 in	dicate	es streng	gth of o	correla	tion) 3	-Strong	g, 2-Med	ium, 1-1	Neak		
COa	1		Progr	amm	e Outco	mes (F	Os) ar	d Prog	gramm	e Specifi	c Outco	me (PSO	Os)	
COS	PO1	PO1PO2PO3PO4PO5PO6PO7PO8P09PO10PO11PO12PSO1PSO2												
CO1	3	3	3	3	2	2	2	-	-	2	2	3	3	3
CO2	3	3	3	3	1	2	2	-	-	2	2	3	3	3
CO3	2	3	3	3	1	2	2	-	-	2	2	3	3	3
CO4	3	3	3	3	1	2	3	-	-	2	2	3	3	3
CO5	3	3	2	3	1	3	3	-	-	3	2	3	3	3
	8		κ.		0	i	•			1977, XS	an pr		n a na Na na na	
						ourse A	Assess	ment r	nethod	15				
		(† 14. j.			Direct				1.1.1	Array and		In	direct	
Interna Interna	al test I al test II	(8) [ (8)			Objectiv Attenda	re test ( nce (5)	(6) )					Course	and cur	2011
Interna Assign	al test II ment/s	I (8) eminai	/Quiz	(5)	End sen	nester	Examiı	nation	(60)			Course	enu sui v	ey
Unit 01:	it 01: INTRODUCTION 9 Hours													
Overvi	iew of s	smart a	agricul	ture: 1	Nature	and o	rigin o	f soil,	Soil m	inerals,	Classific	cation a	nd comp	position,
soil pr	l properties including structure, PH, Surface tension and Soil nutrients – Standards for agriculture –													
Need f	or agrie	culture	digital	izatio	n									

IInit 0					
onno	2: SENSORS, ACT	UATORS AND CON	TROLS IN AGRICULTUR	E	9 Hours
Senso	rs: Smart sensors, (	Colorimetry based d	etection, MEMS Electroche	emical Sensors,	Dielectric Soil
Moist	ure Sensors, ISFET,	Weather sensors, Pro	ximity Sensors, Air flow se	nsors, Therma	l camera, Image
proces	ssing – Actuators an	nd Controls: AC & DO	C Motors, Stepper motor, Se	olenoid actuato	ors, Piezoelectric
motor	s, Electric drives, Hy	draulic and Pneumat	ic actuators		
Unit (	3: TELEMETRY AN	ND PLANT HEALTH	MONITORING		9 Hours
Wirel	ess communication	modules and topolog	y – Zig-bee – Bluetooth –	LORA – Zero j	ower devices –
Energ	v Harvesting tech	nology – GIS enable	ed smart technology – M	leasurement o	f leaf health –
Chlor	ophvll detection = R	ipeness level – Crop n	napping –Fertilizing		
Unit (	4: TECHNOLOGIE	S FOR FARMING			9 Hours
Mator	quality monitoring	a Smart water ma	nagement - Micro-irrigati	on system - S	olar pump and
water				· D	
lighti	ng system – Fencing	g – Android based au	tomation – AI and IOT in fa	arming – Dron	e technology for
soil fi	eld analysis and Ass	istive operations	te de la construction de		° .
Unit 05	5: APPLICATIONS	OF AGRICULTURE	AUTOMATION	an a ⁿ a i	9 Hours
Case	studies: Sorting, Se	eding and Weeding	machine, Fruit picking ro	bots, Autonon	nous unmanned
grour	nd vehicles and Dror	nes			
7	Theory: 45 Hrs	Tutorial:	Practical:	Total Hor	urs: 45Hrs
				n Pilles	
TEXT	BOOKS				
<b>TEXT</b> 1.	BOOKS Ramesh C. Poonia,	Xiao-Zhi Gao, Linesh	1 Raja, Sugam Sharma and S	onali Vyas, "Sr	nart Farming
<b>TEXT</b> 1.	BOOKS Ramesh C. Poonia, Technologies for St	. Xiao-Zhi Gao, Linesh ustainable Agricultura	n Raja, Sugam Sharma and S al Development″, IGI Globa	onali Vyas, "Sr 1, 2018	nart Farming
<b>TEXT</b> 1. 2.	<b>BOOKS</b> Ramesh C. Poonia, Technologies for St Pradeep Tomar and	. Xiao-Zhi Gao, Linesh ustainable Agricultura d Gurjit Kaur, "Artific	n Raja, Sugam Sharma and S al Development", IGI Globa cial Intelligence and IoT-Bas	onali Vyas, "Sr l, 2018 ed Technologie	nart Farming es for
TEXT           1.           2.	<b>BOOKS</b> Ramesh C. Poonia, Technologies for St Pradeep Tomar and Sustainable Farmir	Xiao-Zhi Gao, Linesh ustainable Agricultura d Gurjit Kaur, "Artific ng and Smart Agricult	n Raja, Sugam Sharma and S al Development", IGI Globa cial Intelligence and IoT-Bas cure", IGI Global, 2021	onali Vyas, "Sr l, 2018 ed Technologie	nart Farming es for
TEXT 1. 2. REFE	<b>BOOKS</b> Ramesh C. Poonia, Technologies for Su Pradeep Tomar and Sustainable Farmir <b>RENCES</b>	Xiao-Zhi Gao, Linesh ustainable Agricultura d Gurjit Kaur, "Artific ng and Smart Agricult	n Raja, Sugam Sharma and S al Development", IGI Globa cial Intelligence and IoT-Bas cure", IGI Global, 2021	onali Vyas, "Sr 1, 2018 ed Technologie	nart Farming es for
TEXT 1. 2. REFE 1.	BOOKS Ramesh C. Poonia, Technologies for St Pradeep Tomar and Sustainable Farmir RENCES Annamaria Castrig	Xiao-Zhi Gao, Linesh ustainable Agricultura d Gurjit Kaur, "Artific ng and Smart Agricult gnano, Gabriele Butta	n Raja, Sugam Sharma and S al Development", IGI Globa cial Intelligence and IoT-Bas cure", IGI Global, 2021 fuoco, Raj Khosla, Abdul M	onali Vyas, "Sr 1, 2018 ed Technologie iouazen, Dimiti	nart Farming es for rios Moshou and
TEXT         1.         2.         REFE         1.	BOOKS Ramesh C. Poonia, Technologies for St Pradeep Tomar and Sustainable Farmir RENCES Annamaria Castrig Olivier Naud, "Ag	Xiao-Zhi Gao, Linesh ustainable Agricultura d Gurjit Kaur, "Artific ng and Smart Agricult gnano, Gabriele Butta gricultural internet of	n Raja, Sugam Sharma and S al Development", IGI Globa cial Intelligence and IoT-Bas cure", IGI Global, 2021 fuoco, Raj Khosla, Abdul M things and decision suppor	onali Vyas, "Sr 1, 2018 ed Technologie ouazen, Dimitr t for precision	nart Farming es for rios Moshou and smart farming",
TEXT         1.         2.         REFE         1.	BOOKS Ramesh C. Poonia, Technologies for St Pradeep Tomar and Sustainable Farmir RENCES Annamaria Castrig Olivier Naud, "Ag Elsevier, 2020	Xiao-Zhi Gao, Linesh ustainable Agricultura d Gurjit Kaur, "Artific ng and Smart Agricult gnano, Gabriele Butta gricultural internet of	n Raja, Sugam Sharma and S al Development", IGI Globa cial Intelligence and IoT-Bas cure", IGI Global, 2021 fuoco, Raj Khosla, Abdul M things and decision suppor	onali Vyas, "Sr 1, 2018 ed Technologie Jouazen, Dimitr t for precision	nart Farming es for tios Moshou and smart farming",
TEXT 1. 2. REFE 1. 2.	BOOKS Ramesh C. Poonia, Technologies for St Pradeep Tomar and Sustainable Farmir RENCES Annamaria Castrig Olivier Naud, "Ag Elsevier, 2020 Manoj Karkee, Qin	Xiao-Zhi Gao, Linesh ustainable Agricultura d Gurjit Kaur, "Artific ng and Smart Agricult gnano, Gabriele Butta gricultural internet of Thang, "Fundament	n Raja, Sugam Sharma and S al Development", IGI Globa cial Intelligence and IoT-Bas cure", IGI Global, 2021 fuoco, Raj Khosla, Abdul M things and decision suppor	Jonali Vyas, "Sr 1, 2018 Jeed Technologie Jouazen, Dimitr et for precision I Robotics", Spi	nart Farming es for rios Moshou and smart farming", ringer, 2021
TEXT         1.         2.         REFE         1.         2.         3.	BOOKS Ramesh C. Poonia, Technologies for St Pradeep Tomar and Sustainable Farmir RENCES Annamaria Castrig Olivier Naud, "Ag Elsevier, 2020 Manoj Karkee, Qin Yong He, Pengche Applications", Spr	Xiao-Zhi Gao, Linesh ustainable Agricultura d Gurjit Kaur, "Artific ng and Smart Agricult gnano, Gabriele Butta gricultural internet of Data Zhang, "Fundament eng Nie, Qin Zhang, F inger, 2021	n Raja, Sugam Sharma and S al Development", IGI Globa cial Intelligence and IoT-Bas cure", IGI Global, 2021 fuoco, Raj Khosla, Abdul M things and decision suppor als of Agricultural and Field Fei Liu, "Agricultural Interr	onali Vyas, "Sr l, 2018 ed Technologie fouazen, Dimitr t for precision l Robotics", Spr net of Things T	nart Farming es for rios Moshou and smart farming", ringer, 2021 echnologies and

*B.E: Mechatronics Engineering B.E: Mechatronics Engineering B.E: Mechatronics Engineering SONA COLLEGE OF TECHNOLO Regulation: 2019* Junction Main Road. SALEM - 636 005. Ph:0427-4099999

τ	J <b>19M</b>	C922		A	UTOM	ΙΟΤΙν	E ME	CHATE	RONIC	S	L		T	Р	C
					7						3		0	0	3
Cour	se O	utcome	S												
After	succ	essful o	comple	etion o	f this co	ourse,	the stu	idents s	hould	be able f	o			1	
CO1:	I	Delibera	te the	various	stypes	of sens	ors an	d micro	process	sor appli	cation	in auto	mobile	es.	
CO2:	Γ	Demons	trate tł	ne engi	ne cont	rol sys	tems.			, Cars		n 1 52	е - 19 		
CO3:	A	nalyze	the ele	ectroni	c manag	gemen	t syste	ms used	l in aut	o motive	s.	1944 (m. 1	1601	est i	- Ai din
CO4:	II s	nvestiga ystems.	ate the	e hydr	aulic a	ctuatio	on syst	tem, Vo	ehicles	lighting	Circui	its and	elect	ric w	vindows
CO5:	E	xamine	the va	arious a	pplicat	ions el	lectron	ic contr	ol syste	ems used	in aut	o motiv	ves.		n sha faar
Pre-re	equis	site					1.1								Sura Altered Altered
Di	gital	electror	nics, El	ectrical	drives	and co	ontrol			·····					
	<u> </u>					CC	)/PO, I	PSO Ma	pping	with the second	a sector as a sec				
			(3/2/	1 indic	ates stre	ength o	of corre	elation)	3-Stron	ig. 2-Med	dium. 1	-Weak			
				Progra	mme Oı	itcomes	s (POs)	and Pro	gramme	Specific	Outcom	ne (PSOs	:)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	POS	PNQ		PO11	PO12	PSC	1	PSO2
CO1	2	2	2	2		2	2	2				2	150	/1 	
CO1	3	3	3	2		2	$\frac{2}{2}$	$\frac{2}{2}$				2	3		3
CO3	3	3	3	2		3	2	3				2	3		3
CO4	3	3	3	2		3	2	3			100000000000000000000000000000000000000	2	3		3
CO5	3	3	3	2	1	3	2	3				2	3		3
						Cours	e Asse	essment	metho	ds					
				. ]	Direct					11		Ind	irect		
Interr Interr Interr Assig	nal te nal te nal te nmer	st I (8) st II (8) st III (8) nt/semin	nar/Qu	iz (5)	Object Attend End se	tive tes dance ( emeste	st (6) (5) er Exan	ninatior	n (60)		Co	ourse ei	nd sur	vey	
Unit	01:	Fund	ament	als of A	Automo	otive E	lectror	nics					9	Hou	rs
Basic	sens	or arra	ngeme	nt – T	vpes of	fsenso	ors. Ox	vgen S	Sensor -	- Cranki	ing Ser	isor -	Positio	n Se	meore -
Engin	ne coo	oling w	ater te	mnera	ture Se	nsor -	Engin	e oil n	PSC1170	Sensor	- Fuel	meterir	$\sigma = V$	ohial	a enod
conco	r and	datan	tion of	mperu	Stoppe				alanaia		- ruer	meterm	lg = v	enici	e speeu
applie	cation	ns in au	tomob	iles.	Steppe		015 – K	elays, s	olenoic	is - Micr	oproce	ssor an		ro Co	mputer
Unit 02	2:	Engine	e Mana	ageme	nt Syste	ems							9	Hou	rs
Intro	luctio	on - cor	npone	nts for	engine	manag	gemen	t syster	n - Ope	en loop a	nd clos	sed loo	p cont	rol s	ystem –
Engin	e cra	inking	and w	varm u	p cont	rol – A	Acceler	ration,	deceler	ation an	d idle	speed	contro	ol- Fe	edback

carburetor system – Single point injection and multi point fuel injection system – Advantage of electronic ignition systems – Types of solid state ignition systems and their principles of operation – Electronic spark timing control.

#### Unit 03: Electronic Management Systems

9 Hours

9 Hours

9 Hours

Introduction-Electronic management of chassis systems, anti - lock braking system, Tyre pressure monitoring system, Collision avoidance system, Traction control system, Active suspension system, Key less entry system and Electronic power steering system.

#### Unit 04: Electronic Actuators

Wiper system, flasher, electronic fuel pump, Brake Actuation Warning System. Traficators, Windshield Wiper, Starting Systems – Charging Systems –climate control, Vehicles lighting Circuits Signaling Circuit, electric windows systems, seat belt tensioners.

#### Unit 05: Electronics Control Systems

Introduction of Control Systems - Automatic Cruise Control, Air Bag Control, Automatic Transmission Control, Automatic gear control, Electronic Distributor-less ignition control, Electronic Fuel Control, Exhaust emission control, Electronic Clutch Control, Automotive central locking and anti-theft system control.

Theory: 45 Hrs	Tutorial:	Practical: Hr	Total Hours: 45 Hrs

#### **Text Books**

1.	William Ribbens, Understanding Automotive Electronics, Newnes Publishers, India, 2013.
2.	Tom Denton, "Automobile electrical and electronic systems", Routledge, 5th edition, 2017.
REFER	RENCES
1.	Robert Bosch, "Automotive Handbook" SAE, 2003.
2.	W.F. Walter, Electronic Measurements", Macmillan Press Ltd., London.
3.	E.Dushin, Basic Metrology and Electrical Measurements", MIR Publishers, Moscow, 1989.
4.	Sonde.B.S. "Transducers and Display System", Tata McGraw Hill Publishing Co. Ltd.New Delhi

Professor and Head **Department of Mechatronics Engineering** SONA COLLEGE OF TECHNOLOG Junction Main Road, SALEM - 5.4 Ph:0427-4099959

**B.E:** Mechatronics Engineering

## **BASIC LIFE SUPPORT**

## LTPC 3003

#### **COURSE OUTCOMES:**

#### At the end of the course, the students will be able to

- Analyze Various BLS and First Aid Techniques
- Understand the Essentials of Anatomy and Physiology
- Analyze Various BLS techniques for adults.
- Analyze Various BLS techniques for children and infants
- Apply Respiratory techniques and AED in critical conditions

						C	CO/PO, 1	PSO Ma	pping						
	1			(3/2/1	indicates	strength	of corre	elation) 3	S-Strong	, 2-Med	ium, 1-W	eak (DC	0.1		
COs	PO1	PO2	РОЗ	Progr	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	OS)	PSO2	PSO3
C01	3	-	-	-	-	3	1	1	1	-	-	1	-		
CO2	3		2.5	-	-	1	2	1	-	-	-	1	1		
CO3	3	-	-	-	-	1	1	1	1	-	-	1		-	-
CO4	3	-	-	-	- 1	3	2	1	-	-	-	1		-	1
C05	3	-	-	-	-	2	1	1	1	-	-	1	1	•	1

## UNIT I INTRODUCTION TO BASIC LIFE SUPPORT

9

General Concepts of Basic Life Support (BLS)-Chain of survival. BLS Algorithm, First Aid: Basic First Aid techniques- first aid kit, Law, Resuscitation, Top to Toe Assessment, Hygiene and Hand Washing.

## UNIT II ESSENTIALS OF ANATOMY AND PHYSIOLOGY OF HUMAN BODY

Levels of Organization-Chemicals-Cells-Tissues-Organs-Organ Systems, Metabolism and Homeostasis, Terminology and General Plan of the Body-Case Studies.

#### UNIT III ADULT BASIC LIFE SUPPORT

BLS for adults: Adult BLS Algorithm, CPR, One Rescuer and Two Rescuer BLS for Adults- Adult Mouth-to-Mask Ventilation, Adult Bag-Mask Ventilation, Self-Assessment for Adult BLS

## UNIT IV PAEDIATRIC BASIC LIFE SUPPORT

BLS for children: BLS Algorithm children, One Rescuer and Two Rescuer BLS for children, Child Ventilation. BLS for Infants: One Rescuer and Two Rescuer BLS for infants-Case Studies.

## UNIT V AUTOMATED EXTERNAL DEFIBRILLATOR AND FOREIGN BODY AIRWAY OBSTRUCTION

AED for Adults, AED for Children and Infant, Self-Assessment for AED, FBAO- Respiration, Difficult Breathing, Drowning, Strangulation and Hanging, Chocking, Suffocation - Airway Management-Chest Discomforts-Case Studies.

#### **TOTAL PERIODS:45**

9

#### **REFERENCES:**

1.Dr. Karl Disque, Basic Life Support Provider Handbook, Satori Continuum Publishing, USA, 2021.

2.INDIAN FIRST AID MANUAL – 7th Edition, St. John Ambulance Association (India) – Indian Red Cross Society National Headquarters, New Delhi, 2016.

3.Basic Life Support Training Manual, 1st Edition, Published by in Medical Development Division, Ministry of Health Malaysia, Malaysia in December 2017.

4. Valerie C. Scanlon, Tina Sanders, Essentials of Anatomy and Physiology, 5th Edition, F. A. Davis Company.



# Dr.S.PRABAKAR, M.E., Ph.D.,

Professor and Head Department of Biomedical Engineering Sona College of Technology, Salem-5

#### PREAMBLE

#### To

121

## **Building Services and Safety Regulations**

- Building services engineers are responsible for the design, installation, operation and monitoring of the mechanical, electrical and public health systems required for the safe, comfortable and environmentally friendly operation of modern buildings.
- Building services engineers work closely with other construction professionals such as architects, structural engineers and quantity surveyors. They influence the architecture of a building and play a significant role on the sustainability and energy demand of a building.
- Within building services engineering, new roles are emerging, for example in the areas of renewable energy, sustainability, low carbon technologies and energy management.
- With buildings accounting for around 50% of all carbon emissions, building services engineers play a significant role in combating climate change.

COURS	SE CODI	2			CO	URSE I	NAME	E L T P C								
U190	CE1001	1	BUILD	NG SE	RVICE	S AND S	SAFET	Y REG	ULATIO	ONS	3	0	0	3		
Course	Objectiv	e (s): Tl	he Purp	ose of le	arning	this cou	rse is to	<b>):</b>			1					
1.	Provide	e knowle	edge on	the build	ding elec	ctrification	on syste	ms.								
2.	Impart	the basi	c knowl	edge in	the desig	gn of ligl	hting sys	stems in	the buil	dings.		20 ²⁰ - ²⁰				
3.	Provide	e the bas	sic know	ledge of	fprovidi	ing air co	ondition	ing syst	ems in th	e variou	s types of	building	jš.			
4.	Aware	the stud	ents abo	out fire s	afety reg	gulations	and ins	stallation	1 system	s in the b	uilding.					
5.	Provide	e basic k	nowled	ge in the	water s	upply an	nd sewer	age syst	tems for	the build	lings.			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		
Course	Outcome	e (s) (CC	)s): At (	he end	of this c	ourse, t	he stud	ents wil	l be able	to:						
C01	Acquir	e the bas	sics kno	wledge i	in electri	ical and	wiring s	ystems	for the b	uildings.	(K1)	ang da a ser a ser as se ana				
CO2	Design	the ligh	ting sys	tem for	the varie	ous build	lings and	d disable	ed people	es. (K3)		ana ing kanalang sa				
CO3	Know	the basic	provisi	ons for a	air condi	itioning	systems	for vari	ous type	s of build	dings. (K	4)		1.4.4.1		
CO4	Plan to	install t	he fire s	afety eq	uipment	system	in the b	uildings	by obey	ing the r	egulation	s. (K3)				
CO5	Explain	n the var	rious plu	mbing f	ittings i	n the wat	ter supp	ly and ra	ainwater	harvesti	ng system	n for build	dings. (K	2)		
Knowle	dge Leve	l: K1 –	Remem	ber: K	2 - Und	erstand:	K3 – .	Apply:	K4 – A	nalyze:	K5 – Ev	aluate:	te de digitaria de la			
CO-P	O Mappi	ng														
Car		-	ere Ser fore of series				Pos	an a	a and the	ge menter en ge	a start in	n menerik	PS	SOs		
C.05	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	POII	PO12	PSO1	POS		
<b>CO1</b>	3	1	3	. 1	. 1.	1	. 3	1.	1		-	2	1	2		
CO2	3	2	3	1	2	1	3	- 1	1	-	-	2	1	2		
C03	3	2	3	1	2	1	3	-	1	-	7	2	1	2		
CO4	1	2	3	2	2	2	3	3	2	-	-	2	2	2		
C05	1	3	3	2	2	2	3	1	2	-	-	2	2	2		
CO (Avg)	2.2	2	3	1.4	1.8	1.4	3	1	1.4	-	-	2	1.4	2		
Corr	elation L	evel:		1:Slight	(Low)		2	:Moder:	ate (Med	ium)		3:Subs	tantial (E	ligh)		
					-								phane and the second second			
UN	AT-I	ELI	ECTRIC	CAL SY	STEMS	S IN BU	ILDING	GS					9 H	ours		
Basics o earthing and dist	f electric - ISI spec ribution b	ity- Sing ification oards- T	gle / Thr ns- Type Fransform	ee-phase es of wir mers and	e supply es, wirin l switch	- Protect ng syster -gears- I	ive devi ms, and .ayout o	ices in e their ch f substa	lectrical oice- Ph tions.	installati inning el	ons- Eart ectrical v	hing for viring for	safety- T building	ypes of - Main		
UN	IT-II	PRI	NCIPL	ES OF	ILLUM	INATIO	)N & D	ESIGN		the new prob			9 H	ours		
Visual to synthesi	asks-Fac s of colo	tors affe ur- Lun	ecting vi	sual task flux- Ca	cs- Mod	ern theo Solid an	ry of lig gle illu	ht and c mination	colour- S n- Utilis	ynthesis ation fac	of light- tor- Dep	Additive reciation	and sub factor-	tractive MSCP-		

synthesis of colour- Luminous flux- Candela- Solid angle illumination- Utilisation factor- Depreciation factor- MSCP-MHCP- Lans of illumination- Classification of lighting- Artificial light sources- Spectral energy distribution- Luminous efficiency- Colour temperature- Colour rendering. Design of modern lighting- Lighting for stores, offices, schools, hospitals, and house lighting. Elementary idea of special features required and minimum level of illumination required for

physical	lly handicapped and elderly in building types.	
UN	IT-III REFRIGERATION PRINCIPLES & APPLICATIONS	9 Hours
Thermo evaporat for liqu motors- coil syst	dynamics- Heat- Temperature, measurement transfer- Change of state- Sensible heat- Latent he tion, sublimation- saturation temperature- Superheated vapour- Subcooled liquid- Pressure temperature ids- Refrigerants- Vapour compression cycle- Compressors- Evaporators- Refrigerant control dev Starters- Air handling units- Cooling towers- Window type and packaged air-conditioners- Chilled wa tems- Water piping- Cooling load- Air conditioning systems for different types of buildings- Protection	eat of fusion, re relationship vices- Electric ater plant- Fan on against fire
IIN	IT-IV FIRE SAFETY REGILATIONS AND INSTALLATION	9 Hours
Causes construct and elde storage-	of fire in buildings- Safety regulations- NBC- Planning considerations in buildings like non-combust ction, staircases and lift lobbies, fire escapes, and A.C. systems. Special features required for physically erly in building types- Heat and smoke detectors- Fire alarm system, snorkel ladder- Fire lighting put Dry and wet risers- Automatic sprinklers	ible materials, y handicapped imp and water
UN	NIT-V WATER SUPPLY AND SEWERAGE SYSTEM FOR BUILDINGS	9 Hours
Special Minimu	fixtures- Installation of water closet- Urinals - Flushing devices- Floor drains- Shower stall- Ba m plumbing facilities- Rainwater harvesting systems- Necessity- Construction- Different types	thtub- Bidets-
TEXT	BOOKS:	
1.	R. Udaykumar, "A text book on Building Services", Eswar Press, Chennai, ISBN13, 978817874063 817874063X	8. ISBN-10,
2.	David V. Chadderton, Building Services Engineering Taylor & Francis, 2000.	
REFER		
1.	RENCES:	
	RENCES: Handbook for Building Engineers in Metric systems, NBC, New Delhi, 2011.	
2.	<b>ENCES:</b> Handbook for Building Engineers in Metric systems, NBC, New Delhi, 2011.         Philips Lighting in Architectural Design, McGraw-Hill, New York, Latest edition.	
2. 3.	ENCES:         Handbook for Building Engineers in Metric systems, NBC, New Delhi, 2011.         Philips Lighting in Architectural Design, McGraw-Hill, New York, Latest edition.         R.G.Hopkinson and J.D.Kay, "The Lighting of buildings", Faber and Faber, London, 1972.	
2. 3. 4.	ENCES:         Handbook for Building Engineers in Metric systems, NBC, New Delhi, 2011.         Philips Lighting in Architectural Design, McGraw-Hill, New York, Latest edition.         R.G.Hopkinson and J.D.Kay, "The Lighting of buildings", Faber and Faber, London, 1972.         William H.Severns and Julian R.Fellows, "Air-conditioning and Refrigeration", John Wiley and Sol 1988.	ons, London,



ALP

## PREAMBLE To Disaster Management

We observe that during the last three decades, disaster both natural and man-made occur frequently and their impact on life, live hoods, natural resources, property, infrastructure and facilities is very severe. Though hazards and disasters could not be prevents, by taking preparedness activities, we can minimize their harmful effects.

This course on disaster management emphasizes the need for disaster preparedness rather than emergency response. It throws light on risk assessments, risk resolution and risk sharing and transfer. The importance of community participation, building self-reliant resilient communities and awareness creation is highlights in this course. Application of modern communication tools, remote sensing and GIS technologies in search and resource operations and stream lining activities is elaborated. Way and means of financial arrangements to carry out disaster management activities are discussed.

The physics of earthquake and tsunamis is explained. Safety measures against tsunamis are described. The functioning and tsunamis warning system is described.

COUR	URSE CODE COURSE NAME L T P C													
U19	CE1004			Ð	ISAST	ER MAI	NAGEN	AENT	30 [°]		3	0	0	3
Course	Objectiv	re (s): T	he Purp	ose of le	earning	this cou	rse is to	);						
1.	Provid	e knowl	edge on	the type	s and ef	fects of o	disasters	5.	a (bel a belar generalisi belar da	an a				
2.	Impart	basic ki	nowledg	e to redu	uce the i	mpact of	f disaste	rs.						2
3.	Unders	stand the	relation	ship and	d impact	t of deve	lopmen	t project	s on env	ironment	and soci	ety.		
4.	Dissen	ninate th	e Nation	al polic	y and ro	le played	d by our	country	during	disasters.			2	
5.	Provid	e basic k	nowled	ge in ass	sessment	t of disas	sters wit	h case s	tudy.		·····,			
Course	Outcom	e (s) (CC	Ds): At 1	the end	of this c	ourse, t	he stud	ents wil	l be able	e to:				
CO1	Disting	guish van	rious typ	bes of dis	sasters, 1	their cause	ses and	impacts	on envi	ronment a	and socie	ty (K2)		
CO2	Explai	n differe	nt phase	s of disa	aster ma	nagemen	nt cycle	(K3)						
CO3	Assess	vulnera	bility an	d prepar	re disast	er risk re	duction	measur	es (K4)					
CO4	Explain	n the vul	Inerabili	ty profil	e of Indi	ia(K5)							ander og en ste sender som	
CO5	Prepare	e hazard	zonatio	n maps i	for all ty	pes of ha	azards (	K4)					a e	
Knowle	dge Leve	el: K1 -	Remem	ber: K	2-Und	erstand:	K3	Apply:	K4 – A	nalyze:	K5-Ev	aluate:		
CO-P	O Mappi	ng												New Jaco
Cas			_			1	Pos						PS	Os
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	POS
<b>CO1</b>	3	2	3	3	1	2	3	. 3	3	3	2	3	2	2
CO2	3	2	3	2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	- 3	3	3	3	3
CO5	3	3	3	2	3	3	3	2	2	2	3	3	3	3
CO (Avg)	3	2.6	3	2.6	2.6	2.8	3	2.8	2.8	2.8	2.8	3	2.8	2.8
Corre	elation L	evel:		1:Slight	(Low)		2	:Modera	nte (Med	ium)		3:Subs	tantial (H	ligh)
	al in the company to a	and Bracherson In	ni ni server						2 E					
UN	IT-I	INT	RODU	CTION	TO DIS	SASTER	s						9 He	ours
Definitio	ons: Disa	ster, Ha	zard, Vi	ulnerabi	lity, Res	silience,	Disaste	r Prepar	redness	- Classif	ication o	f Disaste	rs - Cau	ses for
Disaster	s - Impac	ts of Di	sasters o	on Socie	ty, Envi	ronment	, Econo	mics, P	olitics, H	lealth, et	c Type	es of Vul	nerability	/ - The
Sphere F	Project		North Manual I	THE REPORT OF THE REPORT			STATISTICS.							
UN	IT-II	API	PROAC	HES TO	) DISA	STER R	ISK RI	EDUCT	ION				9 Ho	ours
Phases of	of Disaste	er Mana	gement	Cycle -	Culture	of safe	ty, prev	ention,	mitigatio	on, and p	preparedr	iess - Co	mmunity	-based
Disaster	Risk Red	luction -	Structu	ral and M	Non-stru	ctural m	itigation	n measur	res					

UNI	T-III	INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT	9 Hours
Linkage	between D	Development and Disasters -Impact of Development Projects on Environment and So	ciety - Climate
Change	Adaptation	- IPCC - India's Participation - Relevance of Indigenous Knowledge, Appropriate T	echnology, and
Local Re	sources		
UN	IT-IV	DISASTER RISK MANAGEMENT IN INDIA	9 Hours
Hazards-	Vulnerabili	ity Profile of India - Components of Disaster Relief: Water, Sanitation, Food, Shelter	r, Health, etc
National	Policy and	Disaster Management - Institutional Framework for Disaster Management in India - R	ole of NGOs in
Disaster	Risk Reduc	ction - Role of Armed Forces during Disasters	
UN	IT-V	DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS	9 Hours
Applicat Reductio Assessm Assessm	ion of Infor on - Case S ent, Coasta ent	mation Technology, Remote Sensing Technology, and Geographic Information System i tudies on Landslide Hazard Zonation, Seismic Assessment of Buildings and Infrastru- I Flooding Assessment, Storm Surge Assessment, Fluvial and Pluvial Floods Assessme	in Disaster Risk ctures, Drought ent, Forest Fires
		TO	FAL: 45 Hours
TEXT F	OOKS:		
1.	Singhal J	.P. "Disaster Management", Laxmi Publications, 2010.	
2.	Tushar Bl	hattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd	., 2012.
3.	Pardeep S Private Li	Sahni and Madhavi Malalgoda Ariyabandu, "Disaster Risk Reduction in South Asia", PH imited, Delhi- 110092, 2017	I Learning
4.	Gupta An 2011	il K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, N	lew Delhi,
5.	Kapur An	u Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New I	Delhi, 2010.
REFER	ENCES:		
1.	Govt. of I	India: Disaster Management Act, Government of India, New Delhi, 2005	
2.	Governm	ent of India, National Disaster Management Policy,2009.	đ.,

P.UA



#### **INTERNET OF THINGS**

#### U19CS1003

#### PREAMBLE

The "Internet of Things" (IoT) is the network of physical objects or "things" embedded with sensors, actuators, software, electronics and network connectivity to enable it to achieve greater value and service by exchanging data between the physical world and computer systems over existing network infrastructure. By connecting everyday real world objects such as transports, buildings and industrial equipments, IoT guarantees to revolutionize how we live and work. In the year 2020, it is estimated that approximately 30 billion devices will be connected in IoT. IoT will drive new consumer and business behavior that will demand increasingly intelligent industry solutions. It can also help various industries like agriculture, health services, energy, security, disaster management etc., which need to automate solutions to problems faced through remotely connected devices.

The Internet of Things involves three distinct stages:

1. The sensors which collect data (including identification and addressing the sensor/device)

2. An application which collects and analyzes this data for further consolidation

3. Decision making and the transmission of data to the decision-making server. Analytical engines, actuators and Big data may be used for the decision making process.

After completing the course the students will attain the following,

- Ability to build real time IoT applications by interfacing the sensors with minimal programming.
- Ability to associate sensor networks and communication modules for building IoT systems.

Dr.B. SATHIYABHAMA, B.E., M.Tech., Ph.U. PROFESSOR & HEAD, Dept. of Computer Science and Engineering SONA COLLEGE OF TECHNOLOGY SALEM-636 005

05.07.2023

**Regulation 2019** 

U19CS1003

#### **INTERNET OF THINGS**

#### **COURSE OUTCOMES:**

#### At the end of the course the students will be able to

- Recall characteristics, physical and logical designs, domains.
- Differentiate IoT and M2M and explain IoT design methodology.
- Describe the various IoT components.
- Design a portable IoT system using Arduino/Raspberry Pi.
- Discuss the various applications of IoT.

#### UNIT I FUNDAMENTALS OF IOT

Introduction-Definition and Characteristics of IoT- Physical design- IoT Protocols-Logical design - IoT communication models, lot Communication APIs- Enabling technologies - Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels and Templates - Domain specific IoTs.

#### UNIT II M2M AND IOT DESIGN METHODOLOGY

IoT and M2M- difference between IoT and M2M - Software defined networks, network function virtualization- Needs- IoT design methodology

#### UNIT III IOT COMPONENTS

Sensors and actuators - Communication modules - Zigbee- RFID-Wi-Fi-Power sources.

# UNIT IVBUILDING IOT WITH HARDWARE PLATFORMS9Platform - Arduino/Raspberry Pi- Physical devices - Interfaces - Programming -

APIs/Packages

#### UNIT V CASE STUDY

Various Real time applications of IoT- Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking-Environment-Weather monitoring system- Agriculture-Smart irrigation.

#### **TOTAL: 45 PERIODS**

#### **TEXT BOOK:**

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press, 2015.

#### **REFERENCES:**

1. Manoel Carlos Ramon, —Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmersl, Apress, 2014.

2. Marco Schwartz, -Internet of Things with the Arduino Yunl, Packt Publishing, 2014.

3. Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley Publications, 2012.

4. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key applications and Protocols", Wiley Publications 2nd edition, 2013.

05.07.2023

**Regulation 2019** 

Ur.B. SATHIYABHAMA, B.E., M.Tech., Ph.U. PROFESSOR & HEAD, Dept. of Computer Science and Engineering SONA COLLEGE OF TECHNOLOGY SALEM-636 005 9

0

#### U19CS1002

CLOUD COMPUTING

#### **COURSE OUTCOMES:**

#### At the end of the course the students will be able to

- 1. Provide an overview of cloud computing
- 2. Explain the various tasks in developing cloud services
- 3. Analyze the provision of cloud computing services to different users
- 4. Configure the various cloud services according to the environment.
- 5. Analyze various ways to collaborate online

	CO / PO, PSO Mapping														
	(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak														
	Programma Outcomes (POs) and Programma Specific Outcome (PSOs)														
	Programme Outcomes (POs) and Programme Specific Outcome (PSOs)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	POII	PO12	PSO1	PSO2	
CO1	2	1	1	2	1	2	0	1	0	2	1	2	2	2	
CO2	2	1	2	3	3	2	0	1	1	2	2	3	3	3	
CO3	.2	1	3	3	3	2	0	1	0	3	3	2	3	3	
CO4	2	1	2	3	3	2	0	1	0	2	3	3	3	3	
C05	2	2	3	3	3	1	0	1	0	2	3	2	3	3	

#### UNIT I Understanding Cloud Computing

Cloud Computing – History of Cloud Computing – Cloud Architecture – Cloud Storage – Why Cloud Computing Matters – Advantages of Cloud Computing – Disadvantages of Cloud Computing – Companies in the Cloud Today – Cloud Services

#### UNIT II Developing Cloud Services

Web-Based Application – Pros and Cons of Cloud Service Development – Types of Cloud Service Development – Software as a Service – Platform as a Service – Web Services – On-Demand Computing – Discovering Cloud Services Development Services and Tools – Amazon – Google App Engine – IBM Clouds

#### UNIT III Cloud Computing for Everyone

Centralizing Email Communications – Collaborating on Schedules – Collaborating on To-Do Lists – Collaborating Contact Lists – Cloud Computing for the Community – Collaborating on Group Projects and Events – Cloud Computing for the Corporation

#### UNIT IV Using Cloud Services

Collaborating on Calendars, Schedules and Task Management – Exploring Online Calendar Applications- Collaborating on Contact Management – Collaborating on Project Management – Collaborating on Word Processing - Collaborating on Spread sheets- Collaborating on Databases – Storing and Sharing Files

05.07.2023

Or.B. SATHIYABHAMA, B.E., M.Tech., Ph.U. PROFESSOR & HEAD, Dept. of Computer Science and Engineering SONA COLLEGE OF TECHNOLOGY SALEM-636 005

## 10

10

10

6

#### **Regulation 2019**

## UNIT V Other Ways to Collaborate Online

Collaborating via Web-Based Communication Tools – Evaluating Web Mail Services – Evaluating Web Conference Tools – Collaborating via Social Networks and Groupware – Collaborating via Blogs and Wikis

#### **Total:45 hours**

#### **TEXT BOOK:**

1. Michael Miller, Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online, Que Publishing, August 2008.

#### **REFERENCE BOOK:**

1. Haley Beard, Cloud Computing Best Practices for Managing and Measuring Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs, Emereo Pty Limited, July 2008.

Dr.B. SATHIYABHAMA, B.E., N.Toch., Ph.O. PROFESSOR & HEAD, Dept. of Computer Science and Engineering SONA COLLEGE OF TECHNOLOGY SALEM-636 005

05.07.2023

**Regulation 2019** 

#### **Course Outcomes**

At the end of the course, the student will be able to

- 1) Analyze the 1G and 2G Technologies.
- 2) Explain the 2.5G evolutions
- 3) Analyze the principles of 3G and UMTS
- 4) Analyze the evolutions of 4G.
- 5) Summarize the various wireless security applications and solve the mobile phone faults.

			(3/2	2/1 indic	ates stre	CO / ngth of c	PO, PSC orrelatio	) Mappi on) 3-Str	ng ong, 2-	Medium,	1-Weak			
CO	COs Programme Outcomes (POs) and Programme Specific Outcome (PSOs)													
CUS	PO1	PO2	PQ3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	3		1		1	1	3		
CO2	3	3	3	3	3	3		1		1	1	3		
CO3	3	3	3	3	3	3		1		1	1	3		
CO4	3	3	3	3	3	3		1		1	1	3		and the second secon
CO5	3	3	3	3	3	3		1		1	1	3		

#### Unit I 1G and 2G

First Generation (1G): 1G Systems – General 1G System Architecture – Generic MTSO Configuration – Generic Cell Site Configuration – Call Setup Scenarios – Handoff – Frequency Reuse – Spectrum Allocation – Channel Band Plan Second generation (2G): Enhancements over 1G Systems – Integration with Existing 1G Systems – GSM - iDEN – CDPD

#### Unit II 2.5G Generation

Enhancements over 2G – Technology Platforms – General Packet Radio Service (GPRS) – Enhanced Data Rates for Global Evolution (EDGE) – High-Speed Circuit Switched Data (HSCSD) – CDMA2000 (1XRTT) – WAP-Migration Path from 2G to 2.5G to 3G.

05.07.2023

Dr.R.S.SABEENIAN, M.E., MBA., Ph.D., FIETE, Professor and Head of Department Electronics and Communication Engineering SONA COLLEGE OF TECHNOLOGY, Salem - 636 005. Tamilnadu, India.

**Regulations 2019** 

9
Introduction – Universal Mobile Telecommunications Service (UMTS), UMTS Basics, The UTRAN Architecture, Handover, UMTS Services – The UMTS Air Interface – Overview of the 3GPP Network Architecture – Overview CDMA2000 – Commonality Between WCDMA/CDMA2000/CDM

### Unit IV 4G and Beyond

Introduction to LTE - Network architectures – EPC – E-UTRAN architecture – Mobility management – Resource management – Services – Channel – logical and transport channel mapping – downlink/uplink data transfer – MAC control element – PDU packet formats – scheduling services – random access procedure – Objectives of 5G-Architecture – Features and benefits.

## Unit V Wireless Security and Mobile Phone service

Introduction – Fingerprint – Classification of major security attacks against RFID systems GSM Security – Barcode scanner technology features and applications – QR code – BAR code – OTP – AirDrop.

Mobile phone Service: Parts in the mobile phones -Mobile phones assembling and disassembling –motherboard - Mobile Operating Systems - Fault finding - Advanced troubleshooting techniques.

9

9

9

## **Text Book**

- 1) Clint Smith, P.E, Dannel Collins, "3G Wireless Networks" 2nd edition, Tata McGraw-Hill, 2008.
- 2) Vijay K.Garg, "Wireless Network Evolution- 2G & 3G" Pearson, 2013.

#### References

- 1) T.S Rapp port, "Wireless Communications" Principles and Practice, Second Edition, Pearson Education/ Prentice Hall of India, Third Indian Reprint, 2013.
- 2) JochenH.Schiller, "Mobile Communications", 2/e, Pearson, 2014
- SassanAhmadi, "LTE-Advanced A practical systems approach to understanding the 3GPP LTE Releases 10 and 11 radio access technologies", Elsevier, 2014

Dr.R.S.SABEENIAN, M.E., MBA., Ph.D., FIETE, Professor and Head of Department Electronics and Communication Engineerinn SONA COLLEGE OF TECHNOLO Salem - 636 005. Tamilnadu, India.

**Regulations 2019** 

05.07.2023

# U19EC1007

### **Course Outcomes**

#### After successful completion of this course, the students should be able to

- 1) Design HDL code for combinational circuits and sequential circuits
- 2) Analyze MOS transistor theory
- 3) Illustrate the fabrication processes of CMOS
- 4) Design combinational circuit design.
- 5) Architectural choices and performance tradeoffs involved in designing

#### Pre-requisite

**Digital Electronics** 

•			(3/2/1	indicate	es stren	CO/I gth of c	PO, PSO orrelatio	O Mapp on) 3-St	ing rong, 2	2-Mediu	m, 1-We	ak		
<u> </u>			Pro	gramme	Outco	mes (PC	Ds) and	Program	nme Sj	pecific C	outcome	(PSOs)		and the second
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	2	3	1	3	3	1	1	2	1	3	3
CO2	1	2	2	2	2		2	3		1	2	1	3	3
CO3	2	2	3	3	2		2	2		2	1	1	3	3
CO4	2	2	2	3	2		2	3		2	2	1	3	3
CO5	1	2	3	3	2	1	3	2	1	2	1 .	2	3	3

#### Unit I VERILOG HDL

Overview of Digital Design with Verilog HDL – Hierarchical Modeling Concepts – Basic Concepts – Modules and Ports – Gate-Level Modeling – Dataflow Modeling – Behavioral Modeling – Test Benches

### Unit II MOS TRANSISTOR THEORY

Introduction – MOS Transistors – CMOS Logic – Inverter – NAND gate – CMOS Logic Gates – Compound - MOS Transistor Theory – MOS Structure - nMOS and pMOS Transistor Operation –Long Channel V-I Characteristics – C-V Characteristics – Non-ideal I-V Effects

11 anna

Dr.R.S.SABEENIAN, M.E., MBA., Ph.D., FIETE,

Professor and Head of Department Electronics and Communication Engineering SONA COLLEGE OF TECHNOLOGY, Salem - 636 005. Tamilnadu, India.

**Regulations 2019** 

9

9

05.07.2023

#### Unit III CMOS INVERTER AND ITS TECHNOLOGY

DC Transfer Characteristics CMOS Inverter – CMOS Technologies – nMOS Fabrication – n-well Process – SOI – Twin Well Process - Layout Design Rules – CMOS Process Enhancement - Stick Diagram – Inverter – CMOS NAND – CMOS NOR.

#### Unit IV COMBINATIONAL CIRCUIT DESIGN

Static CMOS – Pseudo logic– Dynamic Circuits – Pass-Transistor Circuits – CMOS with Transmission Gates – Source of Power Dissipation.

## Unit V DESIGNING ARITHMETIC BUILDING BLOCKS AND FPGA

Data path circuits, architectures for ripple carry adders (RCA), high speed adders, carry look ahead adder (CLA), Accumulators, Multipliers, Barrel shifters – Introduction to FPGA - FPGA Architecture – FPGA implementation

### **TOTAL: 45 HOURS**

9

9

9

### **Text Book**

- 1) Neil H. E Weste and David Money Harris, "CMOS VLSI Design a circuits and systems perspective", 4th Edition, Pearson, 2015..
- Ciletti, "Advanced Digital Design with the Verilog HDL, 2nd Edition ", Pearson Education, Second Edition, 2011

### References

- 1) Jan M. Rabaey, Anantha Chandrakasan ,Borivoje Nikolic, "Digital Integrated Circuits a design perspective", Pearson Education, 2nd edition, 2016
- Charles H. Roth, Jr., Lizy Kurian John, "Digital System Design using VHDL", Cengage, 3rd edition, 2018
- 3) Pucknell D.A and Eshraghian K., "Basic VLSI Design", Third Edition, PHI, 2003.

Dr.R.S.SABEENIAN, M.E., MBA., Ph.D., FIETE, Professor and Head of Department Electronics and Communication Engineering SONA COLLEGE OF TECHNOLOGY, Salem - 636 005. Tamilnadu, India.

**Regulations 2019** 

05.07.2023

# PREAMBLE TO RENEWABLE ENERGY SYSTEMS

Energy is an important source of all technological developments as well as for all basic needs. The usage of renewable energy sources are the only way for sustainable development and future energy requirements. Renewable energy encourages the generation of electricity without any environmental impact and improves the economic growth of the country.

By choosing this elective the students will be able to know the importance of renewable energy sources for power generation. And also they could understand how the fossil fuels are made an impact on environmental issues. They will be familiar with the following

- Concept of solar energy power production and solar photovoltaic cells and the application of solar PV system and Bio Mass power generation system.
- 2. Principle of conversion of wind energy in to electric energy
- 3. Working of geothermal and hydro power stations.
- 4. Principle of the conversion of tidal and wave energy in to electric energy.
- 5. The emerging technology of power generation.

After completion of this subject students will know how the energy can be produced locally. This knowledge would provide an opportunity to install small capacity power generation units independently for their needs.

15.7.2023

Electrical and Electronics Engineering

Regulations-2019

# **RENEWABLE ENERGY SYSTEMS**

# U19EE1004

# **COURSE OUTCOMES**

At the end of this course the students will be able to,

- 1. Describe the power demand scenario in world level and impact of various renewable energy sources in satisfying power demand.
- 2. Explain the principle of operation and the application of solar system.
- 3. Outline in the components and to find the suitability based on the performance of wind energy and Conversion system, biomass energy system
- 4. Describe the principle of operation and the application of geo thermal power tidal power generation scheme, wave energy and OTEC scheme.
- 5. Illustrate the emerging energy generation systems of MHD, Thermal and fuel cells applications.

		(	(3/2/1 ii	ndicate	s stren	CO / gth of c	PO, PS correlat	SO Map tion) 3-	oping Strong	g, 2-Med	lium, 1-'	Weak	<u></u>	
<u> </u>		$\gamma_{i,j} \in$	Prog	ramme	Outco	mes (P	Os) and	d Progr	amme	Specific	c Outcon	ne (PSC	s)	
CUS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	<b>PO10</b>	PO11	PO12	PSO1	PSO2
CO1	3	2		2					2		2	3	3	3
CO2	3	3	3	2	11	3	3	1	2		3	3	3	3
CO3	3	3	3	2	2	3	3	1	2	530 g. 1	3	3	3	3
CO4	3	3	3	2	2	3	3	1	2	nd jar i e la	3	3	3	3
CO5	3	3	3	2	2	3	3	1	2		3	3	3	3

# UNIT I INTRODUCTION

World energy futures-Energy sources and their availability – Energy cycle of the earth – environmental aspects of energy utilization – Energy plantation- Renewable energy resources and their importance-Prospects of Renewable energy sources.

# UNIT II SOLAR ENERGY SYSTEMS

Introduction –Solar radiation and measurements-Solar energy collectors-solar energy storage systems- Solar pond and applications- Applications of solar energy: solar pumping, solar cooking, solar distillation and solar greenhouse.

# UNIT III WIND AND BIOMASS ENERGY SYSTEMS

Introduction – Wind Energy conversion- Wind speed and power relation – Power extracted from wind – wind distribution and wind speed predictions – types of Wind power systems.

Bio mass conversion technologies-Biogas generation-Types of biogas plants-Bio gas from plant wastes-Utilization of Bio gas and applications.

# UNIT IV GEO THERMAL, TIDAL AND OCEAN ENERGY SYSTEMS

Geothermal energy – Estimates of Geothermal power- site selection for geothermal power plant-Applications of Geothermal energy.

Origin of tides – Basic principle of Tidal power- Operation of a Tidal power plant. Ocean Thermal Energy conversion system- Open and closed OTEC cycles- Prospects of ocean thermal energy conversion in India.

Electrical and Electronics Engineering of Technolog Departure of Technorogy Sona College of Tamil Nadu. Regulations-2019 Salem-636 005. Tamil Nadu.

9

9

9

# UNIT V EMERGING ENERGY SYSTEMS

Magneto Hydro Dynamic (MHD) Power Generation- MHD systems and its operation. Thermo Electric power generation- Basic principle- Thermo electric power generator.

Thermonuclear fusion energy-Nuclear fusion and reactions- Advantages. Fuel cell- classification of fuel cells- Fuel cell based electrical power generation scheme- Applications.

## Lecture: 45; Tutorial: 0; Total: 45 Hours

# **TEXT BOOKS:**

- 1. Rai, G.D., "Non-Conventional Energy Sources", Khanna Publishers, Sixth Edition 2017.
- 2. Khan, B.H, Non- Conventional Energy Resources", Mc. Graw Hill Education Ltd, third reprint 2017.

# **REFERENCE BOOK**

- 1. Rao S. Paruklekar, B.B, "Energy Technology Non Conventional, Renewable and Conventional", KhannaPublishers, 1994.
- 2. F.Kreith and J.F.Kreider, "Principles of Solar Engineering", McGraw Hill.
- 3. T.N.Veziroglu, "Alternative Energy Sources", Vol 5 and 6, McGraw Hill.
- 4. Mukund R.Patel, "Wind and Solar Power Systems", CRC Press LLC.

Dr. S. PADMA, M.E., Ph Dr. S. PADMA, M.E., Ph Drofeesor and Head, Professor and Head, Department of EEE, Sona College of Technology Sona College or Lechnology Salem-636 005. Tamil Nadu.

# PREAMBLE TO

# Innovation, IPR and Entrepreneurship Development

The open elective course syllabus has been framed by Entrepreneurship Development Cell of Sona College of Technology on above mentioned title for even semester. The course covers a wide range of topics from Innovation, Intellectual Property Right and entrepreneurial Competitiveness and competency, basic requirements of setting of an enterprise/startups, factors influencing entrepreneurship, Barriers to Entrepreneurship & Concepts, Issues of Entrepreneurship Failure, Idea selection, Innovation & creativity, design thinking.

The course also covers identifying and selecting a good business opportunity, market survey & research, techno-economic feasibility assessment and preparation of preliminary project reports, management of working capital, costing, break even analysis, taxation, income tax, GST, provision of incentives, subsidies & concessions, entrepreneurship finance and angels & ventures capital fund etc. Benefit out of Government policies to small scale industries and business incubators.

Professor and Head Sona College of Technology Sona conege or recumorogy Salem-636 005. Tamil Nadu.

# U19EE1003 INNOVATION, IPR AND ENTREPRENEURSHIP DEVELOPMENT 3003

# **COURSE OUTCOMES**

At the end of this course the students will be able to,

- Acquire the knowledge for establishment of an enterprise and management,
- Derive the innovative ideas, right approach to the problem and arrive solution for problem with IPR and its legal aspects.
- Prepare the project report preparation and assessment of Business.
- Acquire the knowledge on costing, Techno-economic aspects, find out the sources of finance and opportunities in business.
- Identify the support system for Entrepreneurs by Government and venture capitals.

A. F. See		(*	2/2/1 :			CO/	PO, PS	SO Maj	pping		1. 1		e de des	
	2	(.	5/2/1 11	laicate	s streng	gth of c	correlat	(10n) 3	Strong	g, 2-Me	dium, 1-	Weak		
COs	- 1947 -	an . P	Progr	amme	Outcon	mes (P	Os) and	d Progr	amme	Specifi	c Outco	me (PSC	Os)	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	orgin M		3			3	3	a navni s	3	3	3	3		3
CO2			3			3	3	3	3	3	3	3		3
CO3		1	3			3	3	3	3	3	3	3		3
CO4			3			3	3	3	3	3	3	3		3
CO5			3			3	3	3	3	3	3	3		3

# UNIT I ENTREPRENEURSHIP & MOTIVATION

Entrepreneur – Types of Entrepreneurs – Difference between Entrepreneur and Intrapreneur Entrepreneurship in Economic Growth, Factors Affecting Entrepreneurial Growth. Major Motives Influencing an Entrepreneur – Achievement Motivation Training, Self-Rating, Business Games, Thematic Apperception Test – Stress Management, Entrepreneurship Development Programs – Need, Objectives.

UNIT II INNOVATION, CREATIVITY, DEVELOPMENT PROCESS AND LEGAL ASPECTS 9 Innovation and Creativity- An Introduction, Innovation in Current Environment, Types of Innovation Sources of new Ideas, Methods of generating innovative ideas, creating problem solving, product planning and development process. Legal aspects of business (IPR, Labor law).

# UNIT III BUSINESS

Small Enterprises – Definition, Classification – Characteristics, Ownership Structures – Project Formulation – Steps involved in setting up a Business – identifying, selecting a Good Business opportunity, Market Survey and Research, Techno Economic Feasibility Assessment – Preparation of Preliminary Project Reports – Project Appraisal – Sources of Information – Classification of Needs and Agencies.

# UNIT IV FINANCING AND ACCOUNTING

Need – Sources of Finance, Term Loans, Capital Structure, Financial Institution, Management of working Capital, Costing, Break Even Analysis, Taxation – Income Tax, GST.

15.7.2023

Electrical and Electronics Engineering chnology Department of EEE, Sona College of Tamil Nadu. Salem-636 005. Tamil Nadu.

**Regulations-2019** 

9

9

# UNIT V SUPPORT TO ENTREPRENEURS

Sickness in small Business – Concept, Magnitude, Causes and Consequences, Corrective Measures -Business Incubators – Government Policy for Small Scale Enterprises – Growth Strategies in small industry – Expansion, Diversification, Joint Venture, Merger and Sub Contracting.

# Lecture: 45; Tutorial: 0; Total: 45 Hrs

# **TEXT BOOKS:**

- 1. Khanka. S.S., "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Nagar, New Delhi, 2013. 99
- 2. Donald F Kuratko, "Entreprenuership Theory, Process and Practice", 9 th Edition, Cengage Learning, 2014.

### **REFERENCES:**

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2 nd Edition Dream tech, 2005.
- 3. Rajeev Roy, "Entrepreneurship" 2 nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.
- 5. Innovation and Entrepreneurship Book by Peter Drucker,
- James Larminie and John Lowry, "Electric Vehicle Technology Explained " John Wiley & Sons, 2003.

Dr.S. PADMA, M.E., Ph.D., Dr.S. PADMA, M.E., Ph.D., Professor and Head, FEEE, Professor and Head, Sona College of Technology Salem-636 005. Tamil Nadu.

**U19FT1001** 

At the end of the study of this course the students will be able to,

- 1. Define and discuss the fashion and related terms and reason for change in fashion and the classification
- 2. Describe clothing and its purpose, Role of clothing and its status.
- 3. Describe the selection of clothing for various age groups, Fashion apparel and wardrobe planning.
- 4. Explain the elements and principles of the design, with the effects in the apparel
- 5. Bounce out the theme and development of portfolio.

			(3/2/1	indicat	es stren	CO/P gth of c	O, PSC orrelation	Mapp on) 3-St	ing trong, 2	2-Mediu	m, 1-We	ak	04	
CO			Pro	gramme	e Outco	mes (PO	Os) and	Program	mme S	pecific (	Dutcome	(PSOs)	ta esta contra la	
CUS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO12	PSO1	PSO2	PSO3
C01	3	3	3	1.13.6.5					14291.43	3	3	3	3	3
CO2	3	3	3				alan san san	a an				3	3	3
CO3	3	3	3								3	3	3	3
CO4	3	3	3					1000			3	3	3	3
CO5	3	3	3							3	3	3	3	3

#### UNIT I **Introduction to Fashion**

Origin of fashion - terms and definitions - reasons for change in fashion - classification of fashion - Style, Classic, FAD, Trend - theories of fashion - movement of fashion - fashion cycle.

#### UNIT II Introduction to Clothing

Understanding clothing - Purpose of clothing: protection, modesty, attraction etc - Importance of clothing - Clothing Culture, Men and Women clothing and ornamentation - Role and status of clothing - Clothing according to climatic conditions - factors to be considered in the selection of clothing

#### **UNIT III Selection of clothes**

Clothes for children, middle-aged and adults. Types of clothes according to different types of human figure, Different materials for different clothes, Fabrics and colours suitable for different garments.

**Planning for clothing needs:** Formal clothing, Clothes for parties, Clothes for sports, Casual Clothes for casualwear. Wardrobe Planning: Wardrobe for men and women

#### **Elements and Principles of Design** UNIT IV

Elements of Design: Introduction on basics Elements of design - Silhouette, Details, Texture, Color, Lines,

17.07.2023

**Regulations 2019** 

Dr. D. RAJA, M.Tech., Ph.D., Professor & Head Department of Fashion Technology Sona College of Technology Salem - 636 005. Tamil Nadu

9

3003

9

9



**Principle of design:** Introduction to principles of Elements of design - Proportion, Balance, Rhythm, Center of Interest, Harmony

# UNIT 5 Design and Development

**Boards:** Mood board, fabric board, colour board, accessory board. Fashion illustration – head theories, Illustration techniques – strokes, hatching, shading; Colouring techniques – Medias for colouring. Portfolio presentation – styles of presentation - Fashion shows.

**TOTAL: 45 hours** 

201 PT PT 1 9 10 1

### **TEXT BOOKS**

- 1. Munslow, Janine, McKelvey, Kathryn "Fashion Design Process Innovation and Practice", 2nd Edition, wiley, 2012.
- 2. Nicola White, Ian Griffiths, "The Fashion Business Theory, Practice, Image", Berg, 2000.

## REFERENCE

17.07.2023

- 1. Sumathi, G. J. Elements of fashion and apparel design. New Age International, 2007.
- 2. Kathryn McKelvey "Fashion Source Book" Balckwell Publishing New Delhi.
- 3. Mills, Jane, and Janet K. Smith. Design concepts. Fairchild Books, 1985.
- 4. Rasband J. Wardrobe strategies for women. Fairchild Publications; 2002.
- 5. Jarnow JA, Judelle B, Guerreiro M. Inside the fashion business. Wiley; 1981.

Dr. D. RAJA, M.Tech., Ph.D., Professor & Head Department of Fashion Technology Sona College of Technology Salem - 636 005. Tamil Nadu

establication of States

, banar kur etnikira, methikesigat and rater fippet of brother indontrop to 10 kere post of hukka ligane. Senkasar maratak tin datlateni viotete figletis unud or vears oriente for datlargar antikerte

> Matatang to chetang assets Navalat shubara, Chebras Parja Sava Utilaet sa Farja Gibara Kanakasa at samahasa 111 min sa di a da ang ang kata asa ne ta ang

DMEEN — Elements and tyle-dates of Besign Steppents of Nesigner for electron of 1,200 Fyreight of design - Scherebert Details Ferry robot Lifters

**Regulations 2019** 

	B.E-Mechani	cal Engineering	Regu 2019	ilation <del>)</del>	
COURSE CODE	U19ME1002	L L	Р	с	RF2CAR
COURSE NAME	INDUSTRIAL SAFETY	3 -		3	

### **Course Outcomes**

Upon completion of this course the students will be able to

- **CO1** Summarize various legal provisions available in safety regulation.
- **CO2** Analyze industrial environment hygiene and develop precautionary measure to avert occupational diseases.
- **CO3** Demonstrate the uses of different grades of fire protection systems related with different classes of fire.
- CO4 Develop Agronomical study of different work environment in industries.
- CO5 Discuss the importance of safety training and its impact on shop floor of factories.

as that days are	a a ^{ta} salasi	. Ang		4. A.L.	CC	/ PO	, PSO	Mapp	ing	and the second	9. ogis e s			
	(3/2/	1 indi	cates :	streng	th of	correl	ation	) 3-St	rong,	2-Medi	um, 1-	Weak		
	Prog	gramn	ne Out	come	s (PO	s) and	l Prog	ramm	ie Spe	ecific O	utcome	(PSOs)		
COs, POs	PO1	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PS02
<b>PSOs Mapping</b>		8 P.8						763×52	2 0		40.5	Same 2	samf	
CO - 1	3	-	-	-000	1	3	3	3	2	2	3	3	2	2
CO – 2	3	2	2	1	3	3	3	3	2	2	-	2	2	3
CO - 3	2	3	2	3	3	3	3	3	3	3	3	2	2	3
CO - 4	2	1	3	3	3	3	2	3	1	2	-	2	3	3
CO - 5	1	3	3	3	-	3	-	3	3	3	2	3	2	2
I Init T	DAC	TCE O	ECAE		TNOT		THE				1	L		

Jnit I BASICS OF SAFETY ENGINEERING & ACTS

```
L9T0
```

Evolution of modern safety concept –safety performance monitoring. Acts – factories act – 1948 – Statutory authorities – inspecting staff – Tamilnadu Factories Rules 1950 under Safety and health – environment act – 1986 – Air act 1981, water act 1974 – other acts. Safety in industries – General safety concepts, machine guarding, hazards in metal removing process, welding process, cold and hot working process.

# Unit II OCCUPATIONAL HEALTH AND INDUSTRIAL HYGIENE

L9T0

(Basic concepts, related hazards and exposure limits)

Physical Hazards – Noise, heat, radiation, vibration, recognition of chemical hazards-dust, fumes, mist, vapour, fog, gases. Biological and Ergonomical Hazards-Basic concepts. Occupational Health-Concept and spectrum of health – functional units and activities of occupational health services, pre-employment and post-employment medical examinations – occupational related diseases, levels of prevention of diseases, notifiable occupational diseases. Hazard assessment, procedure, methodology; safety audit, checklist analysis, what-if analysis, safety review, Preliminary Hazard Analysis (PHA), human error analysis, hazard operability studies (HAZOP), safety warning systems.

L9TO

L9T0

L9TO

# Unit III FIRE ENGINEERING AND EXPLOSIVE CONTROL

Fire properties of solid, liquid and gases – fire triangle – principles of fire extinguishing – active and passive fire protection systems – various classes of fires – A, B, C, D, E – types of fire extinguishers – Principles of explosion – Explosion Protection – Electrical Safety. Electrical Hazards – Primary and Secondary hazards – concept of earthing – protection systems – fuses, circuit breakers and over load relays – first aid cardiopulmonary resuscitation techniques.

# Unit IV ERGONOMICS

Introduction to ergonomics: The focus of ergonomics, ergonomics and its areas of application in the work system, modern ergonomics, and future directions for ergonomics. Anatomy, Posture and Body Mechanics: anatomy of the sprine and pelvis related to posture, posture stability and posture adaptation, low back pain, risk factors for musculoskeletal disorders in the workplace, effectiveness and cost effectiveness. Anthropometry and its uses in ergonomics, Applications of human factors engineering, man as a sensor, man as information processor, man as controller – Ergonomics in IT industries.

# Unit V SAFETY EDUCATION AND TRAINING

Importance of training – identification of training needs – training methods – programs, seminars, conferences, competitions –motivation – communication – role of government agencies and private consulting agencies in safety training – creating awareness, awards, celebrations, safety posters, safety displays, safety pledge, safety incentive scheme, safety campaign – Domestic Safety Training.

# **Total Number of hours: 45**

# Learning Resources

# **Text Books**

- 1. Krishnan N.V., "Safety Management in Industry", Jaico Publishing House, Bombay, 1997.
- 2. Hand book of "Occupational Safety and Health", National Safety Council, Chicago, 1982.

# **Reference Books**

- 1. Derek, James, "Fire Prevention Hand Book", Butter Worths and Company, London, 1986.
- 2. Guidelines for Hazard Evaluation Procedures Centre for Chemical Process Safety, AICHE 1992.
- 3. The factories Act 1948, Madras Book Agency, Chennai, 2000.
- 4. Introduction to Ergonomics, R.S. Bridger, Taylor & Francis.

Т Ρ С

3

L

3

#### U19ME1004 ( COURSE CODE

#### COURSE NAME **RENEWABLE ENERGY SOURCES**

Prerequisites- subject: Environmental Sciences.

# **Course Outcomes**

Upon completion of this course the students will be able to

- **CO1** Discuss the power demand scenario in world level and impact of various renewable energy sources in satisfying power demand.
- **CO2** Explain the different components and the principle of operation and the application of solar PV system and Bio Mass power generation system.
- **CO**3 Outline in the components and to find the suitability based on the performance of wind energy conversion system, geothermal and hydel power system.
- Describe the components of tidal power generation scheme and wave energy scheme and CO4 to discuss the performance of two schemes.
- CO5 Compare and contrast the various components and methods of Ocean Energy Conversion Systems.

					CO	/ PO,	PSO	Марр	ing					
	(3/2	2/1 in	dicate	s stre	ngth c	of corr	elatio	n) 3-9	Strong	g, 2-Me	dium, 1	-Weak		
	Prog	gramm	ne Out	come	s (POs	s) and	Prog	ramm	e Spe	cific Ou	utcome	(PSOs)		
COs, POs PSOs Mapping	P01	PO2	PO3	P04	P05	PO6	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO - 1	3	3	3	-	3	3	3	2	3	3	2	3	3	3
CO - 2	3	-	3	3	3	3	3	-	3	3	3	3	3	3
CO – 3	3	3	3	2	3	3	3	-	3	3	3	3	3	3
CO - 4	3	3	3	2	3	3	3	-	3	3	2	3	3	3
CO – 5	3	2	3	3	3	3	3	2	3	3	2	3	3	3
Unit I	INTRO	DDUC	TION				••••••						L 9 -	ГО

#### Unit I INTRODUCTION

World energy use - reserves of energy resources - energy cycle of the earth - environmental aspects of energy Utilization - renewable energy resources and their importance.

#### Unit II **SOLAR & BIO ENERGY**

L9T0

L9T0

Introduction – extra-terrestrial solar radiation – radiation at ground level – collectors – solar cells - applications of solar energy - Biomass Energy - Introduction - Biomass Conversion - Biogas Production – Ethanol Production – Pyrolysis and Gasification – Direct Combustion – Applications.

#### Unit III **GEO THERMAL AND HYDRO ENERGY SOURCES**

Geothermal energy – types of geothermal energy sites, site selection, and geothermal power plants, Hydro energy - Feasibility of small, mini and micro hydro plants: scheme, layout and economics.

B.E-Mechanical Engineering

## Unit IV WIND AND TIDAL ENERGY

Introduction – Wind Energy – Wind speed and power relation – Power extracted from wind – wind distribution and wind speed predictions – types of Wind power systems.

Introduction – origin of tides – power generation schemes – Wave Energy – basic theory – wave power Devices.

# Unit V OTHER RENEWABLE ENERGY SOURCES

Introduction – Open and Closed OTEC cycles – Ocean Currents – Salinity Gradient Devices – Potential impacts of harnessing the different renewable energy resources.

## **Total Number of hours: 45**

## Learning Resources

### Text Books

- 1. Twidell John; Weir, Tony, "Renewable energy resources", Taylor & Francis, 2010
- Godfrey Boyle, "Renewable energy power for a sustainable future", Oxford University Press, 2010
- Kothari DP, Singal KC and Rakesh Ranjan, 'Renewable Energy Sources and Emerging Technologies' PHI Learning Pvt. Ltd.2011.
- 4. S.A. Abbasi and Naseema Abbasi, "Renewable energy sources and their environmental impact", Prentice- Hall of India, 2001.

# **Reference Books**

- 1. T.N.Veziroglu, Alternative Energy Sources, Vol 5 and 6, McGraw Hill, 1978.
- 2. G D Rai, "Non-conventional sources of energy", Khanna Publishers, 2002.
- 3. G D Rai, "Solar energy utilization", Khanna Publishers, 2005.
- 4. MukundR.Patel, "Wind and Solar Power Systems", CRC Press, Taylor and Francis, 2005.
- 5. Yogi Goswami, 'Principles of Solar Engineering' CRC Press, 2015, ISBN 10: 1466563788

Dr. D. SENTHIL KUMAR, ME, Ph.D PROFESSOR & HEAD DEPT. OF MECHANICAL ENGG. SONA COLLEGE OF TECHNOLOGY JUNCTION MAIN ROAD, SALEM-5.

L9TO

Regulation 2019

# U19GE701 PROFESSIONAL ETHICS AND HUMAN VALUES 3003

# **COURSE OUTCOMES:**

At the end of the course, the student will be able to

- Identify the core values that shape the ethical behavior of an engineer.
- Analyze and practice engineering ethics in their profession.
- Apply codes of ethics in the context of social experimentation.
- Explore various safety issues and ethical responsibilities of an engineer.
- Adopt ethical practices pertaining to global issues.

	1	(3/2/1 iı	ndicates	strengt	CO / h of cor	PO Marelation	pping ) 3-Stro	ng, 2-M	edium,	1-Weak		
COs					Progra	mme O	utcomes	s (POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
CO1	2	1	1	1	1	2	3	3	3	2	2	3
CO2	2	1	1	1	2	2	3	3	3	3	3	3
CO3	2	1	3	1	2	3	3	3	3	3	3	3
CO4	2	1	3	1	1	3	3	3	3	2	3	3
CO5	2	1	3	1	1	3	3	3	3	3	3	3

## UNIT-I HUMAN VALUES

Morals, Values and Ethics – Integrity – Work Ethics – Service Learning – Civic Virtue – Respect for Others – Living Peacefully – Caring – Sharing – Honesty – Courage – Valuing Time – Co-operation – Commitment – Empathy – Self-Confidence – Character – Introduction to Yoga and meditation for professional excellence and stress management.

#### UNIT -II ENGINEERING ETHICS

Senses of Engineering Ethics – Variety of moral issues – Types of inquiry – Moral Dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Profession and Professionalism – Professional Ideals and Virtues – Theories of Right action- Self Interest- Customs and Religion-Uses of Ethical Theories.

## UNIT-III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Contrasts with standard experiments- Engineers as Responsible Experimenters – Importance and limitations of Codes of Ethics - Industrial Standards - A Balanced Outlook on Law – Industrial Standards- Case Study: Space shuttle challenger disaster.

#### UNIT-IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk – Types of risk - Assessment of Safety and Risk – Risk Benefit analysis-Reducing Risk – Case Studies - Chernobyl and Bhopal plant disaster.

Collegiality and Loyalty –Respect for Authority- Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Importance and consequences of whistle blowing - Professional Rights – Employee Rights – Intellectual Property Rights (IPR) and its components– Discrimination.

### UNIT-V GLOBAL ISSUES

Multinational Corporations – Environmental Ethics – Computer Ethics and Internet- Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Participation in professional societies- –Code of Conduct – Corporate Social Responsibility.

# Lecture: 45, Tutorial: 0, TOTAL: 45 Hours

9

9

## 9

#### 9 ~ T

# **TEXT BOOKS**

- 1. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, Indian Edition, Tenth reprint, 2017.
- 2. Professional Ethics and Human values- Sonaversity, Edition 2018.

#### REFERENCES

- 1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, 2012.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2016.
- 3. Charles E Harris, Michael S Pritchard and Michael J Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009.
- 4. R.Subramanian, "Professional Ethics", Oxford University Press, Second Edition, 2017.

Miratimon 577/2022

Member Secretary-Academic Courses SONA COLLEGE OF TECHNOLOGY SALEM - 636 005.

# Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VIII Regulations 2019 Branch: Mechatronics Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours	
		Practical						
1	U19MC801	Project Work	0	0	24	12	360	
				То	tal Credits	12 /	360	

**Approved By** 

Chairperson, Mechatronics Engineering BoS **Dr.P.Suresh** 

Member Secretary, Academic Council

Dr.R.Shivakumar

2 Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

MCT

Copy to:-

HOD/ Mechatronics Engineering, Eighth Semester BE MCT Students and Staff, COE